\begin{ccRefConcept}{PolynomialTraits_d::PseudoDivisionQuotient} \ccDefinition This \ccc{AdaptableBinaryFunction} computes the quotient of the so called {\em pseudo division} of to polynomials $f$ and $g$. Given $f$ and $g != 0$, compute quotient $q$ and remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ \ccRefines \ccc{AdaptableBinaryFunction} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type f, second_argument_type g);}{ Returns the quotient $q$ of the pseudo division of $f$ and $g$ with respect to the outermost variable $x_{d-1}$.} \begin{ccAdvanced} \ccMethod{result_type operator()(first_argument_type f, second_argument_type g, int i);}{ Returns the quotient $q$ of the pseudo division of $f$ and $g$ with respect to variable $x_i$. \ccPrecond $0 \leq i < d$ } \end{ccAdvanced} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d::PseudoDivision}\\ \ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionRemainder}\\ \ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionQuotient}\\ \end{ccRefConcept}