% +------------------------------------------------------------------------+ % | Reference manual page: Triangulation_3.tex % +------------------------------------------------------------------------+ % | 27.3.2000 Monique Teillaud % | Package: Triangulation3 % | \RCSdef{\RCSTriangulationRev}{$Id$} \RCSdefDate{\RCSTriangulationDate}{$Date$} % | %%RefPage: end of header, begin of main body % +------------------------------------------------------------------------+ \begin{ccRefClass}{Triangulation_3} \ccDefinition The class \ccc{Triangulation_3} represents a 3-dimensional tetrahedralization of points. \ccInclude{CGAL/Triangulation_3.h} \ccParameters The first template argument must be a model of the \ccc{TriangulationTraits_3} concept. The second template argument must be a model of the \ccc{TriangulationDataStructure_3} concept. It has the default value \ccc{Triangulation_data_structure_3< Triangulation_vertex_base_3,Triangulation_cell_base_3 >}. \ccInheritsFrom{\ccc{Triangulation_utils_3}} \ccTypes The class \ccc{Triangulation_3} defines the following types: \ccThree{typedef TriangulationTraits_3::Tetrahedron Tetraxxx;} {Tetrahedronxxxxx}{} \ccThreeToTwo \ccTypedef{typedef TriangulationDataStructure_3 Triangulation_data_structure;}{} \ccGlue \ccTypedef{typedef TriangulationTraits_3 Geom_traits;}{} \ccTypedef{typedef TriangulationTraits_3::Point_3 Point;}{} \ccGlue \ccTypedef{typedef TriangulationTraits_3::Segment_3 Segment;}{} \ccGlue \ccTypedef{typedef TriangulationTraits_3::Triangle_3 Triangle;}{} \ccGlue \ccTypedef{typedef TriangulationTraits_3::Tetrahedron_3 Tetrahedron;}{} Only vertices ($0$-faces) and cells ($3$-faces) are stored. Edges ($1$-faces) and facets ($2$-faces) are not explicitly represented and thus there are no corresponding classes (see Section~\ref{Triangulation3-sec-intro}). \ccTypedef{typedef TriangulationDataStructure_3::Vertex Vertex;}{} \ccGlue \ccTypedef{typedef TriangulationDataStructure_3::Cell Cell;}{} \ccGlue \ccTypedef{typedef TriangulationDataStructure_3::Facet Facet;}{} \ccGlue \ccTypedef{typedef TriangulationDataStructure_3::Edge Edge;}{} The vertices and faces of the triangulations are accessed through \ccc{handles}, \ccc{iterators} and \ccc{circulators}. A handle is a type which supports the two dereference operators \ccc{operator*} and \ccc{operator->}. The Handle concept is documented in the support library. Iterators and circulators are bidirectional and non-mutable. The edges and facets of the triangulation can also be visited through iterators and circulators which are bidirectional and non-mutable. Iterators and circulators are convertible to the corresponding handles, thus the user can pass them directly as arguments to the functions. \ccTypedef{typedef TriangulationDataStructure_3::Vertex_handle Vertex_handle;} {handle to a vertex} \ccGlue \ccTypedef{typedef TriangulationDataStructure_3::Cell_handle Cell_handle;} {handle to a cell} \ccTypedef{typedef Triangulation_simplex_3 Simplex;} {Reference to a simplex (vertex, edge, facet or cell) of the triangulation} \ccTypedef{typedef TriangulationDataStructure_3::size_type size_type;} {Size type (an unsigned integral type)} \ccGlue \ccTypedef{typedef TriangulationDataStructure_3::difference_type difference_type;} {Difference type (a signed integral type)} \ccThree{typedef TriangulationTraits_3::Tetrahedron Tetraxxxx;} {Tetrahedronxxxxxxx}{} \ccThreeToTwo \ccTypedef{typedef TriangulationDataStructure_3::Cell_iterator All_cells_iterator;} {iterator over cells} \ccGlue \ccTypedef{typedef TriangulationDataStructure_3::Facet_iterator All_facets_iterator;} {iterator over facets} \ccGlue \ccTypedef{typedef TriangulationDataStructure_3::Edge_iterator All_edges_iterator;} {iterator over edges} \ccGlue \ccTypedef{typedef TriangulationDataStructure_3::Vertex_iterator All_vertices_iterator;} {iterator over vertices} \ccThree{typedef TriangulationTraits_3::Tetrahedron ;} {Tetrahedron}{} \ccThreeToTwo \ccNestedType{Finite_cells_iterator}{iterator over finite cells} \ccGlue \ccNestedType{Finite_facets_iterator}{iterator over finite facets} \ccGlue \ccNestedType{Finite_edges_iterator}{iterator over finite edges} \ccGlue \ccNestedType{Finite_vertices_iterator}{iterator over finite vertices} \ccGlue \ccNestedType{Point_iterator}{iterator over the points corresponding to the finite vertices of the triangulation.} \ccThree{typedef TriangulationTraits_3::Tetrahedron Tetrahedro;}{T}{} \ccThreeToTwo \ccTypedef{typedef TriangulationDataStructure_3::Cell_circulator Cell_circulator;} {circulator over all cells incident to a given edge} \ccGlue \ccTypedef{typedef TriangulationDataStructure_3::Facet_circulator Facet_circulator;} {circulator over all facets incident to a given edge} The triangulation class also defines the following enum type to specify which case occurs when locating a point in the triangulation. \ccEnum{enum Locate_type {VERTEX=0, EDGE, FACET, CELL, OUTSIDE_CONVEX_HULL, OUTSIDE_AFFINE_HULL};} {} \ccCreation \ccCreationVariable{t} %% choose variable name \ccThree{Triangulation_3<>}{Facetxxx }{} \ccThreeToTwo \ccConstructor{Triangulation_3 (const TriangulationTraits_3 & traits = TriangulationTraits_3());} {Introduces a triangulation \ccVar\ having only one vertex which is the infinite vertex.} \ccConstructor{Triangulation_3 (const Triangulation_3 & tr);} {Copy constructor. All vertices and faces are duplicated.} \ccConstructor{template < class InputIterator> Triangulation_3 (InputIterator first, InputIterator last, const TriangulationTraits_3 & traits = TriangulationTraits_3() );} {Equivalent to contructing an empty triangulation with the optional traits class argument and calling \ccc{insert(first,last)}.} \ccHeading{Assignment} \ccMethod{Triangulation_3 & operator=(const Triangulation_3 & tr);} {The triangulation \ccc{tr} is duplicated, and modifying the copy after the duplication does not modify the original. The previous triangulation held by \ccVar\ is deleted.} \ccMethod{void swap(Triangulation_3 & tr);} {The triangulations \ccc{tr} and \ccVar\ are swapped. \ccVar.\ccc{swap(tr)} should be preferred to \ccVar\ = \ccc{tr} or to \ccc{t(tr)} if \ccc{tr} is deleted after that. Indeed, there is no copy of cells and vertices, thus this method runs in constant time.} \ccMethod{void clear();} {Deletes all finite vertices and all cells of \ccVar.} \ccFunction{template < class GT, class Tds1, class Tds2 > bool operator==(const Triangulation_3 & t1, const Triangulation_3 & t2);} {Equality operator. Returns true iff there exist a bijection between the vertices of \ccc{t1} and those of \ccc{t2} and a bijection between the cells of \ccc{t1} and those of \ccc{t2}, which preserve the geometry of the triangulation, that is, the points of each corresponding pair of vertices are equal, and the tetrahedra corresponding to each pair of cells are equal (up to a permutation of their vertices).} \ccGlue \ccFunction{template < class GT, class Tds1, class Tds2 > bool operator!=(const Triangulation_3 & t1, const Triangulation_3 & t2);} {The opposite of \ccc{operator==}.} \ccAccessFunctions \ccThree{TriangulationDataStructure_3&}{number_of_finite_edges}{} \ccMethod{const TriangulationTraits_3 & geom_traits() const;} {Returns a const reference to the geometric traits object.} \ccGlue \ccMethod{const TriangulationDataStructure_3 & tds() const;} {Returns a const reference to the triangulation data structure.} \begin{ccAdvanced} \ccHeading{Non const access} The responsibility of keeping a valid triangulation belongs to the user when using advanced operations allowing a direct manipulation of the \ccc{tds}. \ccMethod{TriangulationDataStructure_3 & tds();} {Returns a reference to the triangulation data structure.} This method is mainly a help for users implementing their own triangulation algorithms. \end{ccAdvanced} \ccThree{Triangulationx}{number_of_finite_edges}{} \ccMethod{int dimension() const;} {Returns the dimension of the affine hull.} \ccGlue \ccMethod{size_type number_of_vertices() const;} {Returns the number of finite vertices.} \ccGlue \ccMethod{size_type number_of_cells() const;} {Returns the number of cells or 0 if \ccVar.\ccc{dimension()}$<3$.} \ccMethod{Vertex_handle infinite_vertex();} {Returns the infinite vertex.} \ccGlue \ccMethod{Cell_handle infinite_cell() const;} {Returns a cell incident to the infinite vertex.} \ccHeading{Non-constant-time access functions} As previously said, the triangulation is a collection of cells that are either infinite or represent a finite tetrahedra, where an infinite cell is a cell incident to the infinite vertex. Similarly we call an edge (resp. facet) \ccc{infinite} if it is incident to the infinite vertex. \ccThree{size_type}{t.number_of_finite_edges()toto}{} \ccMethod{size_type number_of_facets() const;} {The number of facets. Returns 0 if \ccVar.\ccc{dimension()}$<2$.} \ccGlue \ccMethod{size_type number_of_edges() const;} {The number of edges. Returns 0 if \ccVar.\ccc{dimension()}$<1$.} \ccMethod{size_type number_of_finite_cells() const;} {The number of finite cells. Returns 0 if \ccVar.\ccc{dimension()}$<3$.} \ccGlue \ccMethod{size_type number_of_finite_facets() const;} {The number of finite facets. Returns 0 if \ccVar.\ccc{dimension()}$<2$.} \ccGlue \ccMethod{size_type number_of_finite_edges() const;} {The number of finite edges. Returns 0 if \ccVar.\ccc{dimension()}$<1$.} \ccHeading{Geometric access functions} \ccThree{Tetrahedron}{t.tetrahedron()}{} \ccMethod{Tetrahedron tetrahedron(const Cell_handle c) const;} {Returns the tetrahedron formed by the four vertices of \ccc{c}. \ccPrecond{\ccVar.\ccc{dimension()} $=3$ and the cell is finite.}} \ccGlue \ccMethod{Triangle triangle(const Cell_handle c, int i) const;} {Returns the triangle formed by the three vertices of facet \ccc{(c,i)}. The triangle is oriented so that its normal points to the inside of cell \ccc{c}. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$ and $i \in \{0,1,2,3\}$ in dimension~3, $i = 3$ in dimension~2, and the facet is finite.}} \ccGlue \ccMethod{Triangle triangle(const Facet & f) const;} {Same as the previous method for facet \ccc{f}. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$ and the facet is finite.}} \ccGlue \ccMethod{Segment segment(const Edge & e) const;} {Returns the line segment formed by the vertices of \ccc{e}. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 1$ and \ccc{e} is finite.}} \ccGlue \ccMethod{Segment segment(const Cell_handle c, int i, int j) const;} {Same as the previous method for edge \ccc{(c,i,j)}. \ccPrecond{As above and $i\neq j$. Moreover $i,j \in \{0,1,2,3\}$ in dimension~3, $i,j \in \{0,1,2\}$ in dimension~2, $i,j \in \{0,1\}$ in dimension~1.}} \ccHeading{Tests for Finite and Infinite Vertices and Faces} \ccMethod{bool is_infinite(const Vertex_handle v) const;} {\ccc{true}, iff vertex \ccc{v} is the infinite vertex.} \ccGlue \ccMethod{bool is_infinite(const Cell_handle c) const;} {\ccc{true}, iff \ccc{c} is incident to the infinite vertex. \ccPrecond{\ccVar.\ccc{dimension()} $=3$.}} \ccGlue \ccMethod{bool is_infinite(const Cell_handle c, int i) const;} {\ccc{true}, iff the facet \ccc{i} of cell \ccc{c} is incident to the infinite vertex. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$ and $i\in\{0,1,2,3\}$ in dimension~3, $i=3$ in dimension~2.}} \ccGlue \ccMethod{bool is_infinite(const Facet & f) const;} {\ccc{true} iff facet \ccc{f} is incident to the infinite vertex. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$.}} \ccGlue \ccMethod{bool is_infinite(const Cell_handle c, int i, int j) const;} {\ccc{true}, iff the edge \ccc{(i,j)} of cell \ccc{c} is incident to the infinite vertex. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 1$ and $i\neq j$. Moreover $i,j \in \{0,1,2,3\}$ in dimension~3, $i,j \in \{0,1,2\}$ in dimension 2, $i,j \in \{0,1\}$ in dimension~1.}} \ccGlue \ccMethod{bool is_infinite(const Edge & e) const;} {\ccc{true} iff edge \ccc{e} is incident to the infinite vertex. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 1$.}} \ccHeading{Queries} \ccMethod{bool is_vertex(const Point & p, Vertex_handle & v) const;} {Tests whether \ccc{p} is a vertex of \ccVar\ by locating \ccc{p} in the triangulation. If \ccc{p} is found, the associated vertex \ccc{v} is given.} \ccGlue \ccMethod{bool is_vertex(Vertex_handle v) const;} {Tests whether \ccc{v} is a vertex of \ccVar.} \ccMethod{bool is_edge(Vertex_handle u, Vertex_handle v, Cell_handle & c, int & i, int & j) const;} {Tests whether \ccc{(u,v)} is an edge of \ccVar. If the edge is found, it gives a cell \ccc{c} having this edge and the indices \ccc{i} and \ccc{j} of the vertices \ccc{u} and \ccc{v} in \ccc{c}, in this order. \ccPrecond{\ccc{u} and \ccc{v} are vertices of \ccVar.}} \ccMethod{bool is_facet(Vertex_handle u, Vertex_handle v, Vertex_handle w, Cell_handle & c, int & i, int & j, int & k) const;} {Tests whether \ccc{(u,v,w)} is a facet of \ccVar. If the facet is found, it computes a cell \ccc{c} having this facet and the indices \ccc{i}, \ccc{j} and \ccc{k} of the vertices \ccc{u}, \ccc{v} and \ccc{w} in \ccc{c}, in this order. \ccPrecond{\ccc{u}, \ccc{v} and \ccc{w} are vertices of \ccVar.}} \ccMethod{bool is_cell(Cell_handle c) const;} {Tests whether \ccc{c} is a cell of \ccVar.} \ccGlue \ccMethod{bool is_cell(Vertex_handle u, Vertex_handle v, Vertex_handle w, Vertex_handle x, Cell_handle & c, int & i, int & j, int & k, int & l) const;} {Tests whether \ccc{(u,v,w,x)} is a cell of \ccVar. If the cell \ccc{c} is found, the method computes the indices \ccc{i}, \ccc{j}, \ccc{k} and \ccc{l} of the vertices \ccc{u}, \ccc{v}, \ccc{w} and \ccc{x} in \ccc{c}, in this order. \ccPrecond{\ccc{u}, \ccc{v}, \ccc{w} and \ccc{x} are vertices of \ccVar.}} \ccGlue \ccMethod{bool is_cell(Vertex_handle u, Vertex_handle v, Vertex_handle w, Vertex_handle x, Cell_handle & c) const;} {Tests whether \ccc{(u,v,w,x)} is a cell of \ccVar\ and computes this cell \ccc{c}. \ccPrecond{\ccc{u}, \ccc{v}, \ccc{w} and \ccc{x} are vertices of \ccVar.}} There is a method \ccc{has_vertex} in the cell class. The analogous methods for facets are defined here. \ccMethod{bool has_vertex(const Facet & f, Vertex_handle v, int & j) const;} {If \ccc{v} is a vertex of \ccc{f}, then \ccc{j} is the index of \ccc{v} in the cell \ccc{f.first}, and the method returns \ccc{true}. \ccPrecond{\ccVar.dimension()=3}} \ccGlue \ccMethod{bool has_vertex(Cell_handle c, int i, Vertex_handle v, int & j) const;} {Same for facet \ccc{(c,i)}. Computes the index \ccc{j} of \ccc{v} in \ccc{c}.} \ccGlue \ccMethod{bool has_vertex(const Facet & f, Vertex_handle v) const;} {} \ccGlue \ccMethod{bool has_vertex(Cell_handle c, int i, Vertex_handle v) const;} {Same as the first two methods, but these two methods do not return the index of the vertex.} The following three methods test whether two facets have the same vertices. \ccMethod{bool are_equal(Cell_handle c, int i, Cell_handle n, int j) const;} {} \ccGlue \ccMethod{bool are_equal(const Facet & f, const Facet & g) const;} {} \ccGlue \ccMethod{bool are_equal(const Facet & f, Cell_handle n, int j) const;} {For these three methods: \ccPrecond{\ccVar.dimension()=3}.} \ccHeading{Point location} \ccThree{Vertex_handle}{t.locate()toto}{} The class \ccClassTemplateName\ provides two functions to locate a given point with respect to a triangulation. It provides also functions to test if a given point is inside a finite face or not. Note that the class \ccc{Delaunay_triangulation_3} also provides a \ccc{nearest_vertex()} function. \ccMethod{Cell_handle locate(const Point & query, Cell_handle start = Cell_handle()) const;} { %\ccPrecond{\ccVar.\ccc{dimension()} $= 3$ (otherwise there is no %cell yet).}\\ If the point \ccc{query} lies inside the convex hull of the points, the cell that contains the query in its interior is returned. If \ccc{query} lies on a facet, an edge or on a vertex, one of the cells having \ccc{query} on its boundary is returned.\\ If the point \ccc{query} lies outside the convex hull of the points, an infinite cell with vertices $\{ p, q, r, \infty\}$ is returned such that the tetrahedron $( p, q, r, query )$ is positively oriented (the rest of the triangulation lies on the other side of facet $( p, q, r )$). \\ Note that locate works even in degenerate dimensions: in dimension 2 (resp. 1, 0) the \ccc{Cell_handle} returned is the one that represents the facet (resp. edge, vertex) containing the query point. \\ The optional argument \ccc{start} is used as a starting place for the search. } \ccMethod{Cell_handle locate(const Point & query, Locate_type & lt, int & li, int & lj, Cell_handle start = Cell_handle() ) const;} {If \ccc{query} lies inside the affine hull of the points, the $k$-face (finite or infinite) that contains \ccc{query} in its interior is returned, by means of the cell returned together with \ccc{lt}, which is set to the locate type of the query (\ccc{VERTEX, EDGE, FACET, CELL}, or \ccc{OUTSIDE_CONVEX_HULL} if the cell is infinite and \ccc{query} lies strictly in it) and two indices \ccc{li} and \ccc{lj} that specify the $k$-face of the cell containing \ccc{query}.\\ If the $k$-face is a cell, \ccc{li} and \ccc{lj} have no meaning; if it is a facet (resp. vertex), \ccc{li} gives the index of the facet (resp. vertex) and \ccc{lj} has no meaning; if it is and edge, \ccc{li} and \ccc{lj} give the indices of its vertices.\\ %If the point \ccc{query} lies outside the convex hull of the points, but %in their affine hull, then \ccc{lt} is set to \ccc{OUTSIDE_CONVEX_HULL}, %and a $k$-face separating the triangulation from \ccc{query} is %specified by the cell containing \ccc{query}, which is returned, and %indices as previously.\\ If the point \ccc{query} lies outside the affine hull of the points, which can happen in case of degenerate dimensions, \ccc{lt} is set to \ccc{OUTSIDE_AFFINE_HULL}, and the cell returned has no meaning. As a particular case, if there is no finite vertex yet in the triangulation, \ccc{lt} is set to \ccc{OUTSIDE_AFFINE_HULL} and \ccc{locate} returns the default constructed handle. \\ The optional argument \ccc{start} is used as a starting place for the search. } \ccMethod{Bounded_side side_of_cell(const Point & p, Cell_handle c, Locate_type & lt, int & li, int & lj) const;} {Returns a value indicating on which side of the oriented boundary of \ccc{c} the point \ccc{p} lies. More precisely, it returns:\\ - \ccc{ON_BOUNDED_SIDE} if \ccc{p} is inside the cell. For an infinite cell this means that \ccc{p} lies strictly in the half space limited by its finite facet and not containing any other point of the triangulation. \\ - \ccc{ON_BOUNDARY} if p on the boundary of the cell. For an infinite cell this means that \ccc{p} lies on the \textit{finite} facet. Then \ccc{lt} together with \ccc{li} and \ccc{lj} give the precise location on the boundary. (See the descriptions of the \ccc{locate} methods.)\\ - \ccc{ON_UNBOUNDED_SIDE} if \ccc{p} lies outside the cell. For an infinite cell this means that \ccc{p} does not satisfy either of the two previous conditions. \ccPrecond{\ccVar.\ccc{dimension()} $=3$}} \ccMethod{Bounded_side side_of_facet(const Point & p, const Facet & f, Locate_type & lt, int & li, int & lj) const;} {Returns a value indicating on which side of the oriented boundary of \ccc{f} the point \ccc{p} lies:\\ - \ccc{ON_BOUNDED_SIDE} if \ccc{p} is inside the facet. For an infinite facet this means that \ccc{p} lies strictly in the half plane limited by its finite edge and not containing any other point of the triangulation . \\ - \ccc{ON_BOUNDARY} if \ccc{p} is on the boundary of the facet. For an infinite facet this means that \ccc{p} lies on the finite edge. \ccc{lt}, \ccc{li} and \ccc{lj} give the precise location of \ccc{p} on the boundary of the facet. \ccc{li} and \ccc{lj} refer to indices in the degenerate cell \ccc{c} representing \ccc{f}.\\ - \ccc{ON_UNBOUNDED_SIDE} if \ccc{p} lies outside the facet. For an infinite facet this means that \ccc{p} does not satisfy either of the two previous conditions. \\ \ccPrecond{\ccVar.\ccc{dimension()} $=2$ and \ccc{p} lies in the plane containing the triangulation. \ccc{f.second} $=3$ (in dimension~2 there is only one facet per cell).}} \ccGlue \ccMethod{Bounded_side side_of_facet(const Point & p, Cell_handle c, Locate_type & lt, int & li, int & lj) const;} {Same as the previous method for the facet \ccc{(c,3)}.} \ccMethod{Bounded_side side_of_edge(const Point & p, const Edge & e, Locate_type & lt, int & li) const;} {Returns a value indicating on which side of the oriented boundary of \ccc{e} the point \ccc{p} lies:\\ - \ccc{ON_BOUNDED_SIDE} if \ccc{p} is inside the edge. For an infinite edge this means that \ccc{p} lies in the half line defined by the vertex and not containing any other point of the triangulation.\\ - \ccc{ON_BOUNDARY} if \ccc{p} equals one of the vertices, \ccc{li} give the index of the vertex in the cell storing \ccc{e}\\ - \ccc{ON_UNBOUNDED_SIDE} if \ccc{p} lies outside the edge. For an infinite edge this means that \ccc{p} lies on the other half line, which contains the other points of the triangulation. \ccPrecond{\ccVar.\ccc{dimension()} $=1$ and \ccc{p} is collinear with the points of the triangulation. \ccc{e.second} $=0$ and \ccc{e.third} $=1$ (in dimension~1 there is only one edge per cell).}} \ccGlue \ccMethod{Bounded_side side_of_edge(const Point & p, Cell_handle c, Locate_type & lt, int & li) const;} {Same as the previous method for edge $(c,0,1)$.} \ccHeading{Flips} Two kinds of flips exist for a three-dimensional triangulation. They are reciprocal. To be flipped, an edge must be incident to three tetrahedra. During the flip, these three tetrahedra disappear and two tetrahedra appear. Figure~\ref{Triangulation3-fig-flips}(left) shows the edge that is flipped as bold dashed, and one of its three incident facets is shaded. On the right, the facet shared by the two new tetrahedra is shaded. Flips are possible only under the following conditions:\\ - the edge or facet to be flipped is not on the boundary of the convex hull of the triangulation \\ - the five points involved are in convex position. \begin{figure} \begin{ccTexOnly} \begin{center} \includegraphics{Triangulation_3_ref/flips} \end{center} \end{ccTexOnly} \caption{Flips. \label{Triangulation3-fig-flips}} \begin{ccHtmlOnly}
Flips
\end{ccHtmlOnly} \end{figure} The following methods guarantee the validity of the resulting 3D triangulation. \textit{Flips for a 2d triangulation are not implemented yet} \ccMethod{bool flip(Edge e);}{} \ccGlue \ccMethod{bool flip(Cell_handle c, int i, int j);} {Before flipping, these methods check that edge \ccc{e=(c,i,j)} is flippable (which is quite expensive). They return \ccc{false} or \ccc{true} according to this test.} \ccMethod{void flip_flippable(Edge e);}{} \ccGlue \ccMethod{void flip_flippable(Cell_handle c, int i, int j);} {Should be preferred to the previous methods when the edge is known to be flippable. \ccPrecond{The edge is flippable.}} \ccMethod{bool flip(Facet f);}{} \ccGlue \ccMethod{bool flip(Cell_handle c, int i);} {Before flipping, these methods check that facet \ccc{f=(c,i)} is flippable (which is quite expensive). They return \ccc{false} or \ccc{true} according to this test.} \ccMethod{void flip_flippable(Facet f);}{} \ccGlue \ccMethod{void flip_flippable(Cell_handle c, int i);} {Should be preferred to the previous methods when the facet is known to be flippable. \ccPrecond{The facet is flippable.}} \ccHeading{Insertions} The following operations are guaranteed to lead to a valid triangulation when they are applied on a valid triangulation. \ccMethod{Vertex_handle insert(const Point & p, Cell_handle start = Cell_handle() );} {Inserts point \ccc{p} in the triangulation and returns the corresponding vertex.\\ If point \ccc{p} coincides with an already existing vertex, this vertex is returned and the triangulation remains unchanged.\\ If point \ccc{p} lies in the convex hull of the points, it is added naturally: if it lies inside a cell, the cell is split into four cells, if it lies on a facet, the two incident cells are split into three cells, if it lies on an edge, all the cells incident to this edge are split into two cells.\\ If point \ccc{p} is strictly outside the convex hull but in the affine hull, \ccc{p} is linked to all visible points on the convex hull to form the new triangulation. See Figure~\ref{Triangulation3-fig-insert_outside_convex_hull}.\\ If point \ccc{p} is outside the affine hull of the points, \ccc{p} is linked to all the points, and the dimension of the triangulation is incremented. All the points now belong to the boundary of the convex hull, so, the infinite vertex is linked to all the points to triangulate the new infinite face. See Figure~\ref{Triangulation3-fig-insert_outside_affine_hull}. The optional argument \ccc{start} is used as a starting place for the search.} \ccMethod{Vertex_handle insert(const Point & p, Locate_type lt, Cell_handle loc, int li, int lj);} {Inserts point \ccc{p} in the triangulation and returns the corresponding vertex. Similar to the above \ccc{insert()} function, but takes as additional parameter the return values of a previous location query. See description of \ccc{locate()} above.} \ccMethod{template < class InputIterator > int insert(InputIterator first, InputIterator last);} {Inserts the points in the range $\left[\right.$\ccc{first}, \ccc{last}$\left.\right)$. Returns the number of inserted points. Note that this function is not garanteed to insert the points following the order of \ccc{InputIterator}. \ccPrecond{The \ccc{value_type} of \ccc{first} and \ccc{last} is \ccc{Point}.}} The previous methods are sufficient to build a whole triangulation. We also provide some other methods that can be used instead of \ccc{insert(p)} when the place where the new point \ccc{p} must be inserted is already known. They are also guaranteed to lead to a valid triangulation when they are applied on a valid triangulation. \ccMethod{Vertex_handle insert_in_cell(const Point & p, Cell_handle c);} {Inserts point \ccc{p} in cell \ccc{c}. Cell \ccc{c} is split into 4 tetrahedra. \ccPrecond{\ccVar.\ccc{dimension()} $=3$ and \ccc{p} lies strictly inside cell \ccc{c}.}} \ccMethod{Vertex_handle insert_in_facet(const Point & p, const Facet & f);} {Inserts point \ccc{p} in facet \ccc{f}. In dimension~3, the 2 neighboring cells are split into 3 tetrahedra; in dimension~2, the facet is split into 3 triangles. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$ and \ccc{p} lies strictly inside face \ccc{f}.}} \ccGlue \ccMethod{Vertex_handle insert_in_facet(const Point & p, Cell_handle c, int i);} {As above, insertion in facet \ccc{(c,i)}. \ccPrecond{As above and $i \in \{0,1,2,3\}$ in dimension~3, $i = 3$ in dimension~2.}} \ccMethod{Vertex_handle insert_in_edge(const Point & p, const Edge & e);} {Inserts \ccc{p} in edge \ccc{e}. In dimension~3, all the cells having this edge are split into 2 tetrahedra; in dimension~2, the 2 neighboring facets are split into 2 triangles; in dimension~1, the edge is split into 2 edges. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 1$ and \ccc{p} lies on edge \ccc{e}.}} \ccGlue \ccMethod{Vertex_handle insert_in_edge(Point p, Cell_handle c, int i, int j);} {As above, inserts \ccc{p} in edge $(\ccc{i}, \ccc{j})$ of \ccc{c}. \ccPrecond{As above and $i\neq j$. Moreover $i,j \in \{0,1,2,3\}$ in dimension~3, $i,j \in \{0,1,2\}$ in dimension~2, $i,j \in \{0,1\}$ in dimension~1.}} \ccMethod{Vertex_handle insert_outside_convex_hull(const Point & p, Cell_handle c);} % int li, int lj=0);} {%The cell \ccc{c}, together with \ccc{li} and possibly \ccc{lj}, give a %separator (facet, edge or vertex, depending on the dimension) for %\ccc{p} from the triangulation (see the description of method %\ccc{locate()} for more details on the way the separator is represented).\\ The cell \ccc{c} must be an infinite cell containing \ccc{p}.\\ Links \ccc{p} to all points in the triangulation that are visible from \ccc{p}. Updates consequently the infinite faces. See Figure~\ref{Triangulation3-fig-insert_outside_convex_hull}. \ccPrecond{\ccVar.\ccc{dimension()} $>0$, \ccc{c}, and the $k$-face represented by \ccc{c} is infinite and contains \ccVar.}} \begin{figure}[htbp] \begin{ccTexOnly} \begin{center} \includegraphics{Triangulation_3/insert_outside_convex_hull} \end{center} \end{ccTexOnly} \caption{\protect\ccc{insert_outside_convex_hull} (2-dimensional case). \label{Triangulation3-fig-insert_outside_convex_hull}} \begin{ccHtmlOnly}
insert_outside_convex_hull} (2-dimensional case)
\end{ccHtmlOnly} \end{figure} \ccMethod{Vertex_handle insert_outside_affine_hull(const Point & p);} {\ccc{p} is linked to all the points, and the infinite vertex is linked to all the points (including \ccc{p}) to triangulate the new infinite face, so that all the points now belong to the boundary of the convex hull. See Figure~\ref{Triangulation3-fig-insert_outside_affine_hull}.\\ This method can be used to insert the first point in an empty triangulation. \ccPrecond{\ccVar.\ccc{dimension()} $<3$ and \ccc{p} lies outside the affine hull of the points.}} \begin{figure}[htbp] \begin{ccTexOnly} \begin{center} \includegraphics{Triangulation_3/insert_outside_affine_hull} \end{center} \end{ccTexOnly} \caption{\protect\ccc{insert_outside_affine_hull} (2-dimensional case). \label{Triangulation3-fig-insert_outside_affine_hull}} \begin{ccHtmlOnly}
insert_outside_affine_hull} (2-dimensional case)
\end{ccHtmlOnly} \end{figure} \ccMethod{template Vertex_handle insert_in_hole(Point p, CellIt cell_begin, CellIt cell_end, Cell_handle begin, int i);} {Creates a new vertex by starring a hole. It takes an iterator range [\ccc{cell_begin}; \ccc{cell_end}[ of \ccc{Cell_handle}s which specifies a hole: a set of connected cells (resp. facets in dimension 2) which is star-shaped wrt \ccc{p}. (\ccc{begin}, \ccc{i}) is a facet (resp. an edge) on the boundary of the hole, that is, \ccc{begin} belongs to the set of cells (resp. facets) previously described, and \ccc{begin->neighbor(i)} does not. Then this function deletes all the cells (resp. facets) describing the hole, creates a new vertex \ccc{v}, and for each facet (resp. edge) on the boundary of the hole, creates a new cell (resp. facet) with \ccc{v} as vertex. Then \ccc{v->set_point(p)} is called and \ccc{v} is returned.\\ This operation is equivalent to calling \ccStyle{tds().insert_in_hole(cell_begin, cell_end, begin, i); v->set_point(p)}. \ccPrecond{\ccVar.\ccc{dimension()} $\geq 2$, the set of cells (resp. facets in dimension 2) is connected, its boundary is connected, and \ccc{p} lies inside the hole, which is star-shaped wrt \ccc{p}}.} \ccHeading{Traversal of the Triangulation} The triangulation class provides several iterators and circulators that allow one to traverse it (completely or partially). \ccHeading{Cell, Face, Edge and Vertex Iterators} \ccThree{Finite_vertices_iterator}{t.finite_vertices_begin()x}{} The following iterators allow the user to visit cells, facets, edges and vertices of the triangulation. These iterators are non-mutable, bidirectional and their value types are respectively \ccc{Cell}, \ccc{Facet}, \ccc{Edge} and \ccc{Vertex}. They are all invalidated by any change in the triangulation. \ccMethod{Finite_vertices_iterator finite_vertices_begin() const;} {Starts at an arbitrary finite vertex. Then \ccc{++} and \ccc{--} will iterate over finite vertices. Returns \ccc{finite_vertices_end()} when \ccVar.\ccc{number_of_vertices()} $=0$.} \ccGlue \ccMethod{Finite_vertices_iterator finite_vertices_end() const;} {Past-the-end iterator} \ccGlue \ccMethod{Finite_edges_iterator finite_edges_begin() const;} {Starts at an arbitrary finite edge. Then \ccc{++} and \ccc{--} will iterate over finite edges. Returns \ccc{finite_edges_end()} when \ccVar.\ccc{dimension()} $<1$.} \ccGlue \ccMethod{Finite_edges_iterator finite_edges_end() const;} {Past-the-end iterator} \ccGlue \ccMethod{Finite_facets_iterator finite_facets_begin() const;} {Starts at an arbitrary finite facet. Then \ccc{++} and \ccc{--} will iterate over finite facets. Returns \ccc{finite_facets_end()} when \ccVar.\ccc{dimension()} $<2$.} \ccGlue \ccMethod{Finite_facets_iterator finite_facets_end() const;} {Past-the-end iterator} \ccGlue \ccMethod{Finite_cells_iterator finite_cells_begin() const;} {Starts at an arbitrary finite cell. Then \ccc{++} and \ccc{--} will iterate over finite cells. Returns \ccc{finite_cells_end()} when \ccVar.\ccc{dimension()} $<3$.} \ccGlue \ccMethod{Finite_cells_iterator finite_cells_end() const;} {Past-the-end iterator} \ccMethod{All_vertices_iterator all_vertices_begin() const;} {Starts at an arbitrary vertex. Iterates over all vertices (even the infinite one). Returns \ccc{vertices_end()} when \ccVar.\ccc{number_of_vertices()} $=0$.} \ccGlue \ccMethod{All_vertices_iterator all_vertices_end() const;} {Past-the-end iterator} \ccGlue \ccMethod{All_edges_iterator all_edges_begin() const;} {Starts at an arbitrary edge. Iterates over all edges (even infinite ones). Returns \ccc{edges_end()} when \ccVar.\ccc{dimension()} $<1$.} \ccGlue \ccMethod{All_edges_iterator all_edges_end() const;} {Past-the-end iterator} \ccGlue \ccMethod{All_facets_iterator all_facets_begin() const;} {Starts at an arbitrary facet. Iterates over all facets (even infinite ones). Returns \ccc{facets_end()} when \ccVar.\ccc{dimension()} $<2$.} \ccGlue \ccMethod{All_facets_iterator all_facets_end() const;} {Past-the-end iterator} \ccGlue \ccMethod{All_cells_iterator all_cells_begin() const;} {Starts at an arbitrary cell. Iterates over all cells (even infinite ones). Returns \ccc{cells_end()} when \ccVar.\ccc{dimension()} $<3$.} \ccGlue \ccMethod{All_cells_iterator all_cells_end() const;} {Past-the-end iterator} \ccMethod{Point_iterator points_begin() const;} {Iterates over the points of the triangulation.} \ccGlue \ccMethod{Point_iterator points_end() const;} {Past-the-end iterator} \ccHeading{Cell and Facet Circulators} \ccThree{Facet_circulator}{t.incident_facets(Edge e)x}{} The following circulators respectively visit all cells or all facets incident to a given edge. They are non-mutable and bidirectional. They are invalidated by any modification of one of the cells traversed. \ccMethod{Cell_circulator incident_cells(Edge e) const;} {Starts at an arbitrary cell incident to \ccc{e}. \ccPrecond{\ccVar.\ccc{dimension()} $=3$.}} \ccGlue \ccMethod{Cell_circulator incident_cells(Cell_handle c, int i, int j) const;} {As above for edge \ccc{(i,j)} of \ccc{c}.} \ccGlue \ccMethod{Cell_circulator incident_cells(Edge e, Cell_handle start) const;} {Starts at cell \ccc{start}. \ccPrecond{\ccVar.\ccc{dimension()} $=3$ and \ccc{start} is incident to \ccc{e}.}} \ccGlue \ccMethod{Cell_circulator incident_cells(Cell_handle c, int i, int j, Cell_handle start) const;} {As above for edge \ccc{(i,j)} of \ccc{c}.} The following circulators on facets are defined only in dimension~3, though facets are defined also in dimension~2: there are only two facets sharing an edge in dimension~2. \ccMethod{Facet_circulator incident_facets(Edge e) const;} {Starts at an arbitrary facet incident to \ccc{e}. \ccPrecond{\ccVar.\ccc{dimension()}~$=3$}} \ccGlue \ccMethod{Facet_circulator incident_facets(Cell_handle c, int i, int j) const;} {As above for edge \ccc{(i,j)} of \ccc{c}.} \ccGlue \ccMethod{Facet_circulator incident_facets(Edge e, Facet start) const;} {Starts at facet \ccc{start}. \ccPrecond{\ccc{start} is incident to \ccc{e}.}} \ccGlue \ccMethod{Facet_circulator incident_facets(Edge e, Cell_handle start, int f) const;} {Starts at facet of index \ccc{f} in \ccc{start}.} \ccGlue \ccMethod{Facet_circulator incident_facets(Cell_handle c, int i, int j, Facet start) const;} {As above for edge \ccc{(i,j)} of \ccc{c}.} \ccGlue \ccMethod{Facet_circulator incident_facets(Cell_handle c, int i, int j, Cell_handle start, int f) const;} {As above for edge \ccc{(i,j)} of \ccc{c} and facet \ccc{(start,f)}.} \ccHeading{Traversal of the incident cells, facets and edges, and the adjacent vertices of a given vertex} \ccThree{OutputIterator}{t.inciden__cells()}{} \ccMethod{template OutputIterator incident_cells(Vertex_handle v, OutputIterator cells) const;} {Copies the \ccc{Cell_handle}s of all cells incident to \ccc{v} to the output iterator \ccc{cells}. If \ccVar.\ccc{dimension()} $<2$, then do nothing. Returns the resulting output iterator. \ccPrecond{\ccc{v} $\neq$ \ccc{Vertex_handle()}, \ccVar.\ccc{is_vertex(v)}.}} \ccMethod{template OutputIterator finite_incident_cells(Vertex_handle v, OutputIterator cells) const;} {Copies the \ccc{Cell_handle}s of all finite cells incident to \ccc{v} to the output iterator \ccc{cells}. If \ccVar.\ccc{dimension()} $<2$, then do nothing. Returns the resulting output iterator. \ccPrecond{\ccc{v} $\neq$ \ccc{Vertex_handle()}, \ccVar.\ccc{is_vertex(v)}.}} \ccMethod{template OutputIterator incident_facets(Vertex_handle v, OutputIterator facets) const;} {Copies all \ccc{Facet}s incident to \ccc{v} to the output iterator \ccc{facets}. Returns the resulting output iterator. \ccPrecond{\ccVar.\ccc{dimension()} $=3$, \ccc{v} $\neq$ \ccc{Vertex_handle()}, \ccVar.\ccc{is_vertex(v)}.}} \ccMethod{template OutputIterator finite_incident_facets(Vertex_handle v, OutputIterator facets) const;} {Copies all finite \ccc{Facet}s incident to \ccc{v} to the output iterator \ccc{facets}. Returns the resulting output iterator. \ccPrecond{\ccVar.\ccc{dimension()} $=3$, \ccc{v} $\neq$ \ccc{Vertex_handle()}, \ccVar.\ccc{is_vertex(v)}.}} \ccMethod{template OutputIterator incident_edges(Vertex_handle v, OutputIterator edges) const;} {Copies all \ccc{Edge}s incident to \ccc{v} to the output iterator \ccc{edges}. Returns the resulting output iterator. \ccPrecond{\ccVar.\ccc{dimension()} $>0$, \ccc{v} $\neq$ \ccc{Vertex_handle()}, \ccVar.\ccc{is_vertex(v)}.}} \ccMethod{template OutputIterator finite_incident_edges(Vertex_handle v, OutputIterator edges) const;} {Copies all finite \ccc{Edge}s incident to \ccc{v} to the output iterator \ccc{edges}. Returns the resulting output iterator. \ccPrecond{\ccVar.\ccc{dimension()} $>0$, \ccc{v} $\neq$ \ccc{Vertex_handle()}, \ccVar.\ccc{is_vertex(v)}.}} \ccMethod{template OutputIterator incident_vertices(Vertex_handle v, OutputIterator vertices) const;} {Copies the \ccc{Vertex_handle}s of all vertices incident to \ccc{v} to the output iterator \ccc{vertices}. If \ccVar.\ccc{dimension()} $<0$, then do nothing. Returns the resulting output iterator. \ccPrecond{\ccc{v} $\neq$ \ccc{Vertex_handle()}, \ccVar.\ccc{is_vertex(v)}.}} \ccMethod{template OutputIterator finite_incident_vertices(Vertex_handle v, OutputIterator vertices) const;} {Copies the \ccc{Vertex_handle}s of all finite vertices incident to \ccc{v} to the output iterator \ccc{vertices}. If \ccVar.\ccc{dimension()} $<0$, then do nothing. Returns the resulting output iterator. \ccPrecond{\ccc{v} $\neq$ \ccc{Vertex_handle()}, \ccVar.\ccc{is_vertex(v)}.}} \ccMethod{size_type degree(Vertex_handle v) const;} {Returns the degree of a vertex, that is, the number of incident vertices. The infinite vertex is counted. \ccPrecond{\ccc{v} $\neq$ \ccc{Vertex_handle()}, \ccVar.\ccc{is_vertex(v)}.}} \ccHeading{Traversal between adjacent cells} \ccThree{Vertex_handle}{mirror_vertex(Cell_handle c, int i)x}{} \ccMethod{int mirror_index(Cell_handle c, int i) const;} {Returns the index of \ccc{c} in its $i^{th}$ neighbor. \ccPrecond{$i \in \{0, 1, 2, 3\}$.}} \ccGlue \ccMethod{Vertex_handle mirror_vertex(Cell_handle c, int i) const;} {Returns the vertex of the $i^{th}$ neighbor of \ccc{c} that is opposite to \ccc{c}. \ccPrecond{$i \in \{0, 1, 2, 3\}$.}} \ccGlue \ccMethod{Facet mirror_facet(Facet f) const;} {Returns the same facet viewed from the other adjacent cell.} \begin{ccAdvanced} \ccHeading{Checking} The responsibility of keeping a valid triangulation belongs to the user when using advanced operations allowing a direct manipulation of cells and vertices. We provide the user with the following methods to help debugging. \ccMethod{bool is_valid(bool verbose = false) const;} {Checks the combinatorial validity of the triangulation. Checks also the validity of its geometric embedding (see Section~\ref{Triangulation3-sec-intro}).\\ When \ccc{verbose} is set to true, messages describing the first invalidity encountered are printed.} \ccMethod{bool is_valid(Cell_handle c, bool verbose = false) const;} {Checks the combinatorial validity of the cell by calling the \ccc{is_valid} method of the \ccc{TriangulationDataStructure_3} cell class. Also checks the geometric validity of \ccc{c}, if \ccc{c} is finite. (See Section~\pageref{Triangulation3-sec-intro}.)\\ When \ccc{verbose} is set to \ccc{true}, messages are printed to give a precise indication of the kind of invalidity encountered.} \end{ccAdvanced} \ccHeading{I/O} \cgal\ provides an interface to Geomview for a 3D-triangulation, see Chapter~\ref{ChapterGeomview} on \ccc{Geomview_stream}. \ccInclude{CGAL/IO/Triangulation_geomview_ostream_3.h} \ccFunction{istream& operator>> (istream& is, Triangulation_3 &t);} {Reads the underlying combinatorial triangulation from \ccc{is} by calling the corresponding input operator of the triangulation data structure class (note that the infinite vertex is numbered 0), and the non-combinatorial information by calling the corresponding input operators of the vertex and the cell classes (such as point coordinates), which are provided by overloading the stream operators of the vertex and cell types. Assigns the resulting triangulation to \ccc{t}.} \ccFunction{ostream& operator<< (ostream& os, const Triangulation_3 &t);} {Writes the triangulation \ccc{t} into \ccc{os}.} The information in the \ccc{iostream} is: the dimension, the number of finite vertices, the non-combinatorial information about vertices (point, etc), the number of cells, the indices of the vertices of each cell, plus the non-combinatorial information about each cell, then the indices of the neighbors of each cell, where the index corresponds to the preceding list of cells. When dimension $<$ 3, the same information is stored for faces of maximal dimension instead of cells. \ccSeeAlso \ccc{TriangulationDataStructure_3::Vertex}\\ \ccc{TriangulationDataStructure_3::Cell} %\ccExample %%\ccIncludeExampleCode{Triangulation3/example1.cpp} \end{ccRefClass}