\begin{ccRefClass}{Homogeneous_converter} %\ccTexHtml{\ccSetThreeColumns{Point_2< us > }{}{\hspace*{8.5cm}}}{} \KernelRefLayout\gdef\ccTagOperatorLayout{\ccFalse} \ccDefinition \ccClassTemplateName converts objects from the kernel traits \ccc{K1} to the kernel traits \ccc{K2}. Those traits must be of the form \ccc{Homogeneous} and \ccc{Homogeneous} (or the equivalent with \ccc{Simple_homogeneous}). It then provides the following operators to convert objects from \ccc{K1} to \ccc{K2}. The third template parameter \ccc{RT_Converter} is a function object that must provide \ccc{K2::RT operator()(const K1::RT &n);} that converts \ccc{n} to an \ccc{K2::RT} that has the same value. The default value of this parameter is \ccc{CGAL::NT_converter}, which uses the conversion operator from \ccc{K1::RT} to \ccc{K2::RT}. Similarly, the fourth template parameter must provide \ccc{K2::FT operator()(const K1::FT &n);} that converts \ccc{n} to an \ccc{K2::FT} that has the same value. Its default value is \ccc{CGAL::NT_converter}. \ccInclude{CGAL/Homogeneous_converter.h} \ccCreation \ccCreationVariable{conv} \ccConstructor{Homogeneous_converter<>();}{Default constructor.} \ccOperations \ccMemberFunction{K2::Point_2 operator()(const K1::Point_2&p);} { returns a \ccc{K2::Point_2} which coordinates are those of \ccc{p}, converted by \ccc{RTConverter}.} Similar operators are defined for the other kernel traits geometric types \ccc{Point_3}, \ccc{Vector_2}... \ccSeeAlso \ccRefIdfierPage{CGAL::Homogeneous} \\ \ccRefIdfierPage{CGAL::Simple_homogeneous} \\ %\ccTexHtml{\KernelRefLayout}{} \end{ccRefClass}