\begin{ccRefConcept}{PolynomialTraits_d::IntegralDivisionUpToConstantFactor} \ccDefinition This \ccc{AdaptableBinaryFunction} computes the integral division of two polynomials of type \ccc{PolynomialTraits_d::Polynomial_d} {\em up to a constant factor (utcf)} . \ccPrecond $g$ divides $f$ in $Q(R)[x_0,\dots,x_{d-1}]$, where $Q(R)$ is the quotient field of the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient_type}. \ccRefines \ccc{AdaptableBinaryFunction} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type f, second_argument_type g);} {Computes $f/g$ up to a constant factor.} %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d::GcdUpToConstantFactor}\\ \end{ccRefConcept}