// Copyright (c) 2011 GeometryFactory // All rights reserved. // // This file is part of CGAL (www.cgal.org); you may redistribute it under // the terms of the Q Public License version 1.0. // See the file LICENSE.QPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL:$ // $Id:$ // // Author(s) : Yin Xu, Andreas Fabri #ifndef CGAL_DEFORM_MESH_H #define CGAL_DEFORM_MESH_H #include #include #include #include #include #include #include #include #include #include #include #include #include #define CGAL_DEFORM_SPOKES_AND_RIMS // it uses all edges in facets around a vertex namespace CGAL { /// \ingroup PkgSurfaceModeling /** * @brief Class providing the functionalities for deforming a triangulated surface mesh * * @pre @a polyhedron.is_pure_triangle() * @tparam Polyhedron a model of HalfedgeGraph * @tparam SparseLinearAlgebraTraitsWithPreFactor_d sparse linear solver for square sparse linear systems * @tparam VertexIndexMap a `ReadWritePropertyMap` with vertex_descriptor as key and `unsigned int` as value type * @tparam EdgeIndexMap a `ReadWritePropertyMap` with edge_descriptor as key and `unsigned int` as value type * @tparam WeightCalculator how to document this (should I provide a concept, like in SegmentationGeomTraits ?) */ /// \code /// // a simple model to WeightCalculator concept, which provides uniform weights /// template /// class Uniform_weight /// { /// public: /// typedef typename boost::graph_traits::edge_descriptor edge_descriptor; /// /// Uniform_weight(Polyhedron& /*polyhedron*/) { } /// /// double operator()(edge_descriptor e) /// { return 1.0; } /// }; /// \endcode template < class Polyhedron, class SparseLinearAlgebraTraits_d, class VertexIndexMap, class EdgeIndexMap, #if defined(CGAL_DEFORM_SPOKES_AND_RIMS) class WeightCalculator = internal::Single_cotangent_weight #else class WeightCalculator = internal::Cotangent_weight #endif > class Deform_mesh { //Typedefs public: typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; /**< The type for vertex representative objects */ typedef typename boost::graph_traits::edge_descriptor edge_descriptor; /**< The type for edge representative objects */ typedef typename Polyhedron::Traits::Vector_3 Vector; /**::vertex_iterator vertex_iterator; typedef typename boost::graph_traits::edge_iterator edge_iterator; typedef typename boost::graph_traits::in_edge_iterator in_edge_iterator; typedef typename boost::graph_traits::out_edge_iterator out_edge_iterator; typedef internal::Spokes_and_rims_iterator Rims_iterator; // Handle container types typedef std::vector Handle_container; typedef std::list Handle_group_container; public: /** The type for returned handle group representative from insert_handle(vertex_descriptor vd), insert_handle(InputIterator begin, InputIterator end) */ typedef typename Handle_group_container::iterator Handle_group; // Data members. public: Polyhedron& polyhedron; /**< Source triangulated surface mesh for modeling */ private: std::vector original; // original positions of roi (size: ros + boundary_of_ros) std::vector solution; // storing position of ros vertices during iterations (size: ros + boundary_of_ros) VertexIndexMap vertex_index_map; // storing indices of ros vertices EdgeIndexMap edge_index_map; // storing indices of ros related edges std::vector ros; // region of solution, including roi and hard constraints on boundary of roi std::vector is_roi; // (size: ros) std::vector is_hdl; // (size: ros) std::vector edge_weight; // weight of edges only those who are incident to ros std::vector rot_mtr; // rotation matrices of ros vertices (size: ros) SparseLinearAlgebraTraits_d m_solver; // linear sparse solver unsigned int iterations; // number of maximal iterations double tolerance; // tolerance of convergence bool need_preprocess; // is there any need to call preprocess() function Handle_group_container handle_groups; // user specified handles WeightCalculator weight_calculator; // calculate weight for an edge // Public methods public: /** * The constructor for deformation object * * @pre @a polyhedron.is_pure_triangle() * @param polyhedron a triangulated surface mesh for modeling * @param vertex_index_map_ vertex index map for associating ids with region of interest vertices * @param edge_index_map_ edge index map for associating ids with region of interest edges * @param iterations number of iterations for each call to deform() * @param tolerance ... */ Deform_mesh(Polyhedron& polyhedron, VertexIndexMap vertex_index_map, EdgeIndexMap edge_index_map, unsigned int iterations = 5, double tolerance = 1e-4) : polyhedron(polyhedron), vertex_index_map(vertex_index_map), edge_index_map(edge_index_map), iterations(iterations), tolerance(tolerance), need_preprocess(true), weight_calculator(polyhedron) { CGAL_precondition(polyhedron.is_pure_triangle()); } /////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////// Vertex insertion deletion ////////////////////////////////// /** * Clear the internal state of the object, after cleanup the object can be treated as if it is just constructed */ void clear() { need_preprocess = true; // clear vertices //roi.clear(); ros.clear(); handle_groups.clear(); // no need to clear vertex index map (or edge) since they are going to be reassigned // (at least the useful parts will be reassigned) } /** * Create a new empty handle group for inserting handles. * insert_handle(Handle_group handle_group, vertex_descriptor vd) or insert_handle(Handle_group handle_group, InputIterator begin, InputIterator end) * can be used for populating a group. * After inserting vertices, one can use translate(Handle_group handle_group, const Vector& translation) or rotate(...) * to apply transformations on all vertices inside the group. * @return created handle group representative (returned representative is valid until erase_handle(Handle_group handle_group) is called [or copy constructor what to do about it?]) * @see insert_handle(vertex_descriptor vd), insert_handle(InputIterator begin, InputIterator end) */ Handle_group create_handle_group() { need_preprocess = true; handle_groups.push_back(Handle_container()); return --handle_groups.end(); } /** * -- I think this function can be removed, since combination of other functions simply accomplish the same task. \code Handle_group handle_group = create_handle_group(); insert_handle(handle_group, vd); // or Handle_group handle_group = insert_handle(vd); \endcode * Create a new empty handle group and insert vd in it. * @param vd vertex to be inserted * @return created handle group representative * @see insert_handle(Handle_group handle_group, vertex_descriptor vd), * insert_handle(Handle_group handle_group, InputIterator begin, InputIterator end) * for inserting more vertices into a handle group */ Handle_group insert_handle(vertex_descriptor vd) { need_preprocess = true; Handle_group handle_group = create_handle_group(); insert_handle(handle_group, vd); return handle_group; } /** * Insert a vertex into a handle group * @param handle_group group to be inserted into * @param vd vertex to be inserted */ void insert_handle(Handle_group handle_group, vertex_descriptor vd) { need_preprocess = true; handle_group->push_back(vd); } /** * -- I think this function can be removed, since combination of other functions simply accomplish the same task. \code Handle_group handle_group = create_handle_group(); insert_handle(handle_group, begin, end); // or Handle_group handle_group = insert_handle(begin, end); \endcode * Create a new handle group and insert vertices in the range. * @tparam InputIterator input iterator type which points to vertex descriptors * @param begin iterators spesifying the range of vertices i.e. [begin, end) * @param end iterators spesifying the range of vertices i.e. [begin, end) * It simply corresponds to: */ template Handle_group insert_handle(InputIterator begin, InputIterator end) { need_preprocess = true; Handle_group handle_group = create_handle_group(); insert_handle(handle_group, begin, end); return handle_group; } /** * Insert vertices in the range to provided handle group * @tparam InputIterator input iterator type which points to vertex descriptors * @param handle_group group to be inserted in * @param begin iterators spesifying the range of vertices [begin, end) * @param end iterators spesifying the range of vertices [begin, end) */ template void insert_handle(Handle_group handle_group, InputIterator begin, InputIterator end) { need_preprocess = true; for( ;begin != end; ++begin) { insert_handle(handle_group, *begin); } } /** * Erase handle group, and invalidate the representative so that it should not be used anymore. * @param handle_group group to be erased */ void erase_handle(Handle_group handle_group) { need_preprocess = true; handle_groups.erase(handle_group); } /** * Erase a vertex from a handle group, note that handle group is not erased even if it becomes empty. * @param handle_group group to be erased from * @param vd vertex to be erased */ void erase_handle(Handle_group handle_group, vertex_descriptor vd) { need_preprocess = true; typename Handle_container::iterator it = std::find(handle_group->begin(), handle_group->end(), vd); if(vd != handle_group->end()) { handle_group->erase(it); // Although the handle group might get empty, we do not delete it from handle_groups } } /** * Insert vertices in the range to region of interest * @tparam InputIterator input iterator type which points to vertex descriptors * @param begin iterators spesifying the range of vertices [begin, end) * @param end iterators spesifying the range of vertices [begin, end) */ template void insert_roi(InputIterator begin, InputIterator end) { need_preprocess = true; for( ;begin != end; ++begin) { insert_roi(*begin); } } /** * Insert a vertex to region of interest * @param vd vertex to be inserted */ void insert_roi(vertex_descriptor vd) { need_preprocess = true; ros.push_back(vd); } /** * Erease a vertex from ROI * @param vd vertex to be erased */ void erase_roi(vertex_descriptor vd) { need_preprocess = true; typename std::vector::iterator it = std::find(ros.begin(), ros.end(), vd); if(vd != ros.end()) { ros.erase(it); } } ////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////// Other utilities /////////////////////////////////////////// /** * Set the number of iterations used in deform() */ void set_iterations(unsigned int iterations) { this->iterations = iterations; } /** * Set the tolerance of convergence used in deform() * Set to zero if energy based termination is not required. */ void set_tolerance(double tolerance) { this->tolerance = tolerance; } /** * Translate the handle group by translation, * in other words every handle vertex in the handle_group is translated from its original position * @param handle_group representative of the handle group which is subject to translation * @param translation translation vector */ void translate(Handle_group handle_group, const Vector& translation) { for(typename Handle_container::iterator it = handle_group->begin(); it != handle_group->end(); ++it) { std::size_t v_id = id(*it); solution[v_id] = solution[v_id] + translation; } } /** * Rotate the handle group around rotation center by quaternion then translate it by translation * @tparam Quaternion quaternion type which defines a multiplication operator with Vect as quad * vector * @tparam Vect vector type 3 param constructable and has operator[] ... */ template void rotate(Handle_group handle_group, const Point& rotation_center, const Quaternion& quat, const Vect& translation) { for(typename Handle_container::iterator it = handle_group->begin(); it != handle_group->end(); ++it) { std::size_t v_id = id(*it); Point p = CGAL::ORIGIN + ( original[v_id] - rotation_center); Vect v = quat * Vect(p.x(),p.y(),p.z()); p = Point(v[0], v[1], v[2]) + ( rotation_center - CGAL::ORIGIN); p = p + Vector(translation[0],translation[1],translation[2]); solution[v_id] = p; } } /** * Assign positions in the range as target positions for the vertices in the handle group * @tparam InputIterator input iterator type which points to Polyhedron::Traits::Point_3 * @param handle_group group of target vertices * @param begin iterators spesifying the range of positions [begin, end) * @param end iterators spesifying the range of positions [begin, end) */ template void assign(Handle_group handle_group, InputIterator begin, InputIterator end) { for(typename Handle_container::iterator it = handle_group->begin(); (it != handle_group->end()) && (begin != end); ++it, ++begin) { solution[id(*it)] = *begin; } } /** * Assign the target position for the handle vertes * @param vd handle vertex to be assigned target position * @param target_position constrained position */ void assign(vertex_descriptor vd, const Point& target_position) { solution[id(vd)] = target_position; } /** * Reset position of deformed vertices to their original positions (i.e. positions at the time of last preprocess() call) */ void undo() { for(std::size_t i = 0; i < ros.size(); ++i) { ros[i]->point() = original[id(ros[i])]; } } /////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////// Deformation Core /////////////////////////////////////////// /** * Necessary precomputation work before beginning deformation. * It needs to be called after insertion of vertices as handles or roi is done. * @return true if Laplacian matrix factorization is successful */ bool preprocess() { need_preprocess = false; region_of_solution(); compute_edge_weight(); // compute_edge_weight() has to come later then region_of_solution() // Assemble linear system A*X=B typename SparseLinearAlgebraTraits_d::Matrix A(ros.size()); // matrix is definite positive, and not necessarily symmetric assemble_laplacian(A); // Pre-factorizing the linear system A*X=B double D; return m_solver.pre_factor(A, D); } /** * Deformation on roi vertices. Default iteration and tolerance values are used. * @see set_iterations(unsigned int iterations), set_tolerance(double tolerance), deform(unsigned int iterations, double tolerance) */ void deform() { deform(iterations, tolerance); } /** * Deformation on roi vertices, */ void deform(unsigned int iterations, double tolerance) { CGAL_precondition(!need_preprocess || !"preprocess() need to be called before deforming!"); // Note: no energy based termination occurs at first iteration // because comparing energy of original model (before deformation) and deformed model (deformed_1_iteration) // simply does not make sense, comparison is meaningful between deformed_(i)_iteration & deformed_(i+1)_iteration double energy_this = 0; // initial value is not important, because we skip first iteration double energy_last; // iterations for ( unsigned int ite = 0; ite < iterations; ++ite) { // main steps of optimization update_solution(); optimal_rotations_svd(); // energy based termination if(tolerance > 0.0 && (ite + 1) < iterations) // if tolerance <= 0 then don't compute energy { // also no need compute energy if this iteration is the last iteration energy_last = energy_this; energy_this = energy(); if(energy_this < 0) { std::cout << "Negative energy" << std::endl; } if(ite != 0) // skip first iteration { double energy_dif = std::abs((energy_last - energy_this) / energy_this); if ( energy_dif < tolerance ) { break; } } } } // copy solution to target mesh assign_solution(); } private: /// Compute cotangent weights of all edges void compute_edge_weight() { #if defined(CGAL_DEFORM_SPOKES_AND_RIMS) compute_edge_weight_spokes_and_rims(); #else compute_edge_weight_arap(); #endif } void compute_edge_weight_arap() { std::set have_id; // edges which has assigned ids (and also weights are calculated) // iterate over ros vertices and calculate weights for edges which are incident to ros std::size_t next_edge_id = 0; for (std::size_t i = 0; i < ros.size(); i++) { vertex_descriptor vi = ros[i]; in_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::in_edges(vi, polyhedron); e != e_end; e++) { typename std::set::iterator it = have_id.find(*e); if(it != have_id.end()) { continue; } // we have assigned an id already, which means we also calculted the weight put(edge_index_map, *e, next_edge_id++); have_id.insert(*e); double weight = weight_calculator(*e); edge_weight.push_back(weight); }// end of edge loop }// end of ros loop } void compute_edge_weight_spokes_and_rims() { std::set have_id; // edges which has assigned ids (and also weights are calculated) // iterate over ros vertices and calculate weights for edges which are incident to ros std::size_t next_edge_id = 0; for (std::size_t i = 0; i < ros.size(); i++) { vertex_descriptor vi = ros[i]; out_edge_iterator e_begin, e_end; boost::tie(e_begin, e_end) = boost::out_edges(vi, polyhedron); for (Rims_iterator rims_it(e_begin, polyhedron); rims_it.get_iterator() != e_end; ++rims_it ) { edge_descriptor active_edge = rims_it.get_descriptor(); typename std::set::iterator it = have_id.find(active_edge); if(it == have_id.end()) // we have not assigned an id yet { put(edge_index_map, active_edge, next_edge_id++); have_id.insert(active_edge); double wji = weight_calculator(active_edge); // edge(pj - pi) edge_weight.push_back(wji); edge_descriptor opp = CGAL::opposite_edge(active_edge, polyhedron); put(edge_index_map, opp, next_edge_id++); have_id.insert(opp); double wij = weight_calculator(opp); // edge(pi - pj) edge_weight.push_back(wij); } }// end of edge loop }// end of ros loop } /// Assigns id to one rign neighbor of vd, and also push them into push_vector void assign_id_to_one_ring(vertex_descriptor vd, std::size_t& next_id, std::vector& push_vector, std::set& have_id) { in_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::in_edges(vd, polyhedron); e != e_end; e++) { vertex_descriptor vt = boost::source(*e, polyhedron); typename std::set::iterator it = have_id.find(vt); if( it == have_id.end() ) // neighboring vertex which is outside of roi and not visited previously (i.e. need an id) { put(vertex_index_map, vt, next_id++); have_id.insert(vt); push_vector.push_back(vt); } } } /// Find region of solution, including roi and hard constraints, which is the 1-ring vertices out roi void region_of_solution() { // Important: at this point ros contains the roi vertices only. // copy roi vertices to roi vector std::vector roi; // we can remove this temp, but I try to simplify things below roi.insert(roi.end(), ros.begin(), ros.end()); //////////////////////////////////////////////////////////////// // assign id to vertices inside: roi, boundary of roi (roi + boundary of roi = ros), // and boundary of ros // keep in mind that id order does not have to be compatible with ros order std::set have_id; // keep vertices which are assigned an id for(std::size_t i = 0; i < roi.size(); i++) // assign id to all roi vertices { put(vertex_index_map, roi[i], i); } have_id.insert(roi.begin(), roi.end()); // mark roi vertices since they have ids now // now assign an id to vertices on boundary of roi std::size_t next_ros_index = roi.size(); for(std::size_t i = 0; i < roi.size(); i++) { assign_id_to_one_ring(roi[i], next_ros_index, ros, have_id); } std::vector outside_ros; // boundary of ros also must have ids because in SVD calculation, // one-ring neighbor of ROS vertices are reached. for(std::size_t i = roi.size(); i < ros.size(); i++) { assign_id_to_one_ring(ros[i], next_ros_index, outside_ros, have_id); } //////////////////////////////////////////////////////////////// // initialize the rotation matrices (size: ros) rot_mtr.resize(ros.size()); for(std::size_t i = 0; i < rot_mtr.size(); i++) { rot_mtr[i].setIdentity(); } // initialize solution and original (size: ros + boundary_of_ros) // for simplifying coding effort, I also put boundary of ros into solution and original // because boundary of ros vertices are reached in optimal_rotations_svd() and energy() solution.resize(ros.size() + outside_ros.size()); original.resize(ros.size() + outside_ros.size()); for(std::size_t i = 0; i < ros.size(); i++) { std::size_t v_id = id(ros[i]); solution[v_id] = ros[i]->point(); original[v_id] = ros[i]->point(); } for(std::size_t i = 0; i < outside_ros.size(); ++i) { std::size_t v_id = id(outside_ros[i]); original[v_id] = outside_ros[i]->point(); solution[v_id] = outside_ros[i]->point(); } // initialize flag vectors of roi, handle, ros is_roi.assign(ros.size(), false); is_hdl.assign(ros.size(), false); for(std::size_t i = 0; i < roi.size(); i++) { std::size_t v_id = id(roi[i]); is_roi[v_id] = true; } for(typename Handle_group_container::iterator it_group = handle_groups.begin(); it_group != handle_groups.end(); ++it_group) { for(typename Handle_container::iterator it_vertex = it_group->begin(); it_vertex != it_group->end(); ++it_vertex) { std::size_t v_id = id(*it_vertex); is_hdl[v_id] = true; } } } /// Assemble Laplacian matrix A of linear system A*X=B void assemble_laplacian(typename SparseLinearAlgebraTraits_d::Matrix& A) { #if defined(CGAL_DEFORM_SPOKES_AND_RIMS) assemble_laplacian_spokes_and_rims(A); #else assemble_laplacian_arap(A); #endif } /// Construct matrix that corresponds to left-hand side of eq:lap_ber in user manual /// Also constraints are integrated as eq:lap_energy_system in user manual void assemble_laplacian_arap(typename SparseLinearAlgebraTraits_d::Matrix& A) { /// assign cotangent Laplacian to ros vertices for(std::size_t k = 0; k < ros.size(); k++) { vertex_descriptor vi = ros[k]; std::size_t vi_id = id(vi); if ( is_roi[vi_id] && !is_hdl[vi_id] ) // vertices of ( roi - hdl ) { double diagonal = 0; in_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::in_edges(vi, polyhedron); e != e_end; e++) { vertex_descriptor vj = boost::source(*e, polyhedron); double wij = edge_weight[id(*e)]; // edge(pi - pj) double wji = edge_weight[id(CGAL::opposite_edge(*e, polyhedron))]; // edge(pi - pj) double total_weight = wij + wji; A.set_coef(vi_id, id(vj), -total_weight, true); // off-diagonal coefficient diagonal += total_weight; } // diagonal coefficient A.set_coef(vi_id, vi_id, diagonal, true); } else { A.set_coef(vi_id, vi_id, 1.0, true); } } } /// Construct matrix that corresponds to left-hand side of eq:lap_ber_rims in user manual /// Also constraints are integrated as eq:lap_energy_system in user manual void assemble_laplacian_spokes_and_rims(typename SparseLinearAlgebraTraits_d::Matrix& A) { /// assign cotangent Laplacian to ros vertices for(std::size_t k = 0; k < ros.size(); k++) { vertex_descriptor vi = ros[k]; std::size_t vi_id = id(vi); if ( is_roi[vi_id] && !is_hdl[vi_id] ) // vertices of ( roi - hdl ): free vertices { double diagonal = 0; out_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::out_edges(vi, polyhedron); e != e_end; e++) { double total_weight = 0; // an edge contribute to energy only if it is part of an incident triangle // (i.e it should not be a border edge) if(!boost::get(CGAL::edge_is_border, polyhedron, *e)) { double wji = edge_weight[id(*e)]; // edge(pj - pi) total_weight += wji; } edge_descriptor opp = CGAL::opposite_edge(*e, polyhedron); if(!boost::get(CGAL::edge_is_border, polyhedron, opp)) { double wij = edge_weight[id(opp)]; // edge(pi - pj) total_weight += wij; } // place coefficient to matrix vertex_descriptor vj = boost::target(*e, polyhedron); A.set_coef(vi_id, id(vj), -total_weight, true); // off-diagonal coefficient diagonal += total_weight; } // diagonal coefficient A.set_coef(vi_id, vi_id, diagonal, true); } else // constrained vertex { A.set_coef(vi_id, vi_id, 1.0, true); } } } /// Local step of iterations, computing optimal rotation matrices using SVD decomposition, stable void optimal_rotations_svd() { #if defined(CGAL_DEFORM_SPOKES_AND_RIMS) optimal_rotations_svd_spokes_and_rims(); #else optimal_rotations_svd_arap(); #endif } void optimal_rotations_svd_arap() { Eigen::Matrix3d cov; // covariance matrix Eigen::JacobiSVD svd; // SVD solver // only accumulate ros vertices for ( std::size_t k = 0; k < ros.size(); k++ ) { vertex_descriptor vi = ros[k]; std::size_t vi_id = id(vi); // compute covariance matrix (user manual eq:cov_matrix) cov.setZero(); in_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::in_edges(vi, polyhedron); e != e_end; e++) { vertex_descriptor vj = boost::source(*e, polyhedron); std::size_t vj_id = id(vj); Eigen::Vector3d pij = sub_to_col(original[vi_id], original[vj_id]); Eigen::RowVector3d qij = sub_to_row(solution[vi_id], solution[vj_id]); double wij = edge_weight[id(*e)]; cov += wij * (pij * qij); } // svd decomposition svd.compute( cov, Eigen::ComputeFullU | Eigen::ComputeFullV ); const Eigen::Matrix3d& u = svd.matrixU(); const Eigen::Matrix3d& v = svd.matrixV(); // extract rotation matrix rot_mtr[vi_id] = v*u.transpose(); // checking negative determinant of r if ( rot_mtr[vi_id].determinant() < 0 ) // changing the sign of column corresponding to smallest singular value { Eigen::Matrix3d u_m = u; u_m.col(2) *= -1; // singular values are always sorted in decresing order so use column 2 rot_mtr[vi_id] = v*u_m.transpose(); // re-extract rotation matrix } } } void optimal_rotations_svd_spokes_and_rims() { Eigen::Matrix3d cov; // covariance matrix Eigen::JacobiSVD svd; // SVD solver // only accumulate ros vertices for ( std::size_t k = 0; k < ros.size(); k++ ) { vertex_descriptor vi = ros[k]; std::size_t vi_id = id(vi); // compute covariance matrix cov.setZero(); //iterate through all triangles out_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::out_edges(vi, polyhedron); e != e_end; e++) { if(boost::get(CGAL::edge_is_border, polyhedron, *e)) { continue; } // no facet // iterate edges around facet edge_descriptor edge_around_facet = *e; do { vertex_descriptor v1 = boost::target(edge_around_facet, polyhedron); vertex_descriptor v2 = boost::source(edge_around_facet, polyhedron); std::size_t v1_id = id(v1); std::size_t v2_id = id(v2); Eigen::Vector3d p12 = sub_to_col(original[v1_id], original[v2_id]); Eigen::RowVector3d q12 = sub_to_row(solution[v1_id], solution[v2_id]); double w12 = edge_weight[id(edge_around_facet)]; cov += w12 * (p12 * q12); } while( (edge_around_facet = CGAL::next_edge(edge_around_facet, polyhedron)) != *e); } // svd decomposition svd.compute( cov, Eigen::ComputeFullU | Eigen::ComputeFullV ); const Eigen::Matrix3d& u = svd.matrixU(); const Eigen::Matrix3d& v = svd.matrixV(); // extract rotation matrix rot_mtr[vi_id] = v*u.transpose(); // checking negative determinant of r if ( rot_mtr[vi_id].determinant() < 0 ) // changing the sign of column corresponding to smallest singular value { Eigen::Matrix3d u_m = u; u_m.col(2) *= -1; // singular values are always sorted in decresing order so use column 2 rot_mtr[vi_id] = v*u_m.transpose(); // re-extract rotation matrix } } } /// Global step of iterations, updating solution void update_solution() { #if defined(CGAL_DEFORM_SPOKES_AND_RIMS) update_solution_spokes_and_rims(); #else update_solution_arap(); #endif } void update_solution_arap() { typename SparseLinearAlgebraTraits_d::Vector X(ros.size()), Bx(ros.size()); typename SparseLinearAlgebraTraits_d::Vector Y(ros.size()), By(ros.size()); typename SparseLinearAlgebraTraits_d::Vector Z(ros.size()), Bz(ros.size()); // assemble right columns of linear system for ( std::size_t k = 0; k < ros.size(); k++ ) { vertex_descriptor vi = ros[k]; std::size_t vi_id = id(vi); if ( is_roi[vi_id] && !is_hdl[vi_id] ) {// free vertices Eigen::Vector3d xyz; xyz.setZero(); // sum of right-hand side of eq:lap_ber in user manual in_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::in_edges(vi, polyhedron); e != e_end; e++) { vertex_descriptor vj = boost::source(*e, polyhedron); std::size_t vj_id = id(vj); Eigen::Vector3d pij = sub_to_col(original[vi_id], original[vj_id]); double wij = edge_weight[id(*e)]; double wji = edge_weight[id(CGAL::opposite_edge(*e, polyhedron))]; xyz += (wij*rot_mtr[vi_id] + wji*rot_mtr[vj_id]) * pij; } Bx[vi_id] = xyz(0,0); By[vi_id] = xyz(1,0); Bz[vi_id] = xyz(2,0); } else {// constrained vertex Bx[vi_id] = solution[vi_id].x(); By[vi_id] = solution[vi_id].y(); Bz[vi_id] = solution[vi_id].z(); } } // solve "A*X = B". m_solver.linear_solver(Bx, X); m_solver.linear_solver(By, Y); m_solver.linear_solver(Bz, Z); // copy to solution for (std::size_t i = 0; i < ros.size(); i++) { std::size_t v_id = id(ros[i]); Point p(X[v_id], Y[v_id], Z[v_id]); solution[v_id] = p; } } void update_solution_spokes_and_rims() { typename SparseLinearAlgebraTraits_d::Vector X(ros.size()), Bx(ros.size()); typename SparseLinearAlgebraTraits_d::Vector Y(ros.size()), By(ros.size()); typename SparseLinearAlgebraTraits_d::Vector Z(ros.size()), Bz(ros.size()); // assemble right columns of linear system for ( std::size_t k = 0; k < ros.size(); k++ ) { vertex_descriptor vi = ros[k]; std::size_t vi_id = id(vi); if ( is_roi[vi_id] && !is_hdl[vi_id] ) {// free vertices Eigen::Vector3d xyz; xyz.setZero(); // sum of right-hand side of eq:lap_ber_rims in user manual out_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::out_edges(vi, polyhedron); e != e_end; e++) { vertex_descriptor vj = boost::target(*e, polyhedron); std::size_t vj_id = id(vj); Eigen::Vector3d pij = sub_to_col(original[vi_id], original[vj_id]); if(!boost::get(CGAL::edge_is_border, polyhedron, *e)) { vertex_descriptor vn = boost::target(CGAL::next_edge(*e, polyhedron), polyhedron); // opp vertex of e_ij double wji = edge_weight[id(*e)] / 3.0; // edge(pj - pi) xyz += wji*(rot_mtr[vi_id] + rot_mtr[vj_id] + rot_mtr[id(vn)])*pij; } edge_descriptor opp = CGAL::opposite_edge(*e, polyhedron); if(!boost::get(CGAL::edge_is_border, polyhedron, opp)) { vertex_descriptor vm = boost::target(CGAL::next_edge(opp, polyhedron), polyhedron); // other opp vertex of e_ij double wij = edge_weight[id(opp)] / 3.0; // edge(pi - pj) xyz += wij*(rot_mtr[vi_id] + rot_mtr[vj_id] + rot_mtr[id(vm)])*pij; } } Bx[vi_id] = xyz(0,0); By[vi_id] = xyz(1,0); Bz[vi_id] = xyz(2,0); } else {// constrained vertices Bx[vi_id] = solution[vi_id].x(); By[vi_id] = solution[vi_id].y(); Bz[vi_id] = solution[vi_id].z(); } } // solve "A*X = B". m_solver.linear_solver(Bx, X); m_solver.linear_solver(By, Y); m_solver.linear_solver(Bz, Z); // copy to solution for (std::size_t i = 0; i < ros.size(); i++) { std::size_t v_id = id(ros[i]); Point p(X[v_id], Y[v_id], Z[v_id]); solution[v_id] = p; } } /// Assign solution to target mesh void assign_solution() { for(std::size_t i = 0; i < ros.size(); ++i){ std::size_t v_id = id(ros[i]); if(is_roi[v_id]) { ros[i]->point() = solution[v_id]; } } } /// Compute modeling energy double energy() { #ifdef CGAL_DEFORM_SPOKES_AND_RIMS return energy_spokes_and_rims(); #else return energy_arap(); #endif } double energy_arap() { double sum_of_energy = 0; // only accumulate ros vertices for( std::size_t k = 0; k < ros.size(); k++ ) { vertex_descriptor vi = ros[k]; std::size_t vi_id = id(vi); in_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::in_edges(vi, polyhedron); e != e_end; e++) { vertex_descriptor vj = boost::source(*e, polyhedron); std::size_t vj_id = id(vj); Eigen::Vector3d pij = sub_to_col(original[vi_id], original[vj_id]); Eigen::Vector3d qij = sub_to_col(solution[vi_id], solution[vj_id]); double wij = edge_weight[id(*e)]; sum_of_energy += wij * (qij - rot_mtr[vi_id]*pij).squaredNorm(); } } return sum_of_energy; } double energy_spokes_and_rims() { double sum_of_energy = 0; // only accumulate ros vertices for( std::size_t k = 0; k < ros.size(); k++ ) { vertex_descriptor vi = ros[k]; std::size_t vi_id = id(vi); //iterate through all triangles out_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::out_edges(vi, polyhedron); e != e_end; e++) { if(boost::get(CGAL::edge_is_border, polyhedron, *e)) { continue; } // no facet // iterate edges around facet edge_descriptor edge_around_facet = *e; do { vertex_descriptor v1 = boost::target(edge_around_facet, polyhedron); vertex_descriptor v2 = boost::source(edge_around_facet, polyhedron); std::size_t v1_id = id(v1); std::size_t v2_id = id(v2); Eigen::Vector3d p12 = sub_to_col(original[v1_id], original[v2_id]); Eigen::Vector3d q12 = sub_to_col(solution[v1_id], solution[v2_id]); double w12 = edge_weight[id(edge_around_facet)]; sum_of_energy += w12 * (q12 - rot_mtr[vi_id]*p12).squaredNorm(); } while( (edge_around_facet = CGAL::next_edge(edge_around_facet, polyhedron)) != *e); } } return sum_of_energy; } /// p1 - p2, return Eigen Column Vector Eigen::Vector3d sub_to_col(const Point& p1, const Point& p2) { return Eigen::Vector3d(p1.x() - p2.x(), p1.y() - p2.y(), p1.z() - p2.z()); } /// p1 - p2, return Eigen Row Vector Eigen::RowVector3d sub_to_row(const Point& p1, const Point& p2) { return Eigen::RowVector3d(p1.x() - p2.x(), p1.y() - p2.y(), p1.z() - p2.z()); } /// shorthand of get(vertex_index_map, v) std::size_t id(vertex_descriptor v) { return get(vertex_index_map, v); } /// shorthand of get(edge_index_map, e) std::size_t id(edge_descriptor e) { return get(edge_index_map, e); } #ifdef CGAL_DEFORM_EXPERIMENTAL // Experimental stuff, needs further testing double norm_1(const Eigen::Matrix3d& X) { double sum = 0; for ( int i = 0; i < 3; i++ ) { for ( int j = 0; j < 3; j++ ) { sum += abs(X(i,j)); } } return sum; } double norm_inf(const Eigen::Matrix3d& X) { double max_abs = abs(X(0,0)); for ( int i = 0; i < 3; i++ ) { for ( int j = 0; j < 3; j++ ) { double new_abs = abs(X(i,j)); if ( new_abs > max_abs ) { max_abs = new_abs; } } } return max_abs; } // polar decomposition using Newton's method, with warm start, stable but slow // not used, need to be investigated later void polar_newton(const Eigen::Matrix3d& A, Eigen::Matrix3d &U, double tole) { Eigen::Matrix3d X = A; Eigen::Matrix3d Y; double alpha, beta, gamma; do { Y = X.inverse(); alpha = sqrt( norm_1(X) * norm_inf(X) ); beta = sqrt( norm_1(Y) * norm_inf(Y) ); gamma = sqrt(beta/alpha); X = 0.5*( gamma*X + Y.transpose()/gamma ); } while ( abs(gamma-1) > tole ); U = X; } // polar decomposition using Eigen, 5 times faster than SVD template void polar_eigen(const Mat& A, Mat& R, bool& SVD) { typedef typename Mat::Scalar Scalar; typedef Eigen::Matrix Vec; const Scalar th = std::sqrt(Eigen::NumTraits::dummy_precision()); Eigen::SelfAdjointEigenSolver eig; feclearexcept(FE_UNDERFLOW); eig.computeDirect(A.transpose()*A); if(fetestexcept(FE_UNDERFLOW) || eig.eigenvalues()(0)/eig.eigenvalues()(2) svd; svd.compute(A, Eigen::ComputeFullU | Eigen::ComputeFullV ); const Mat& u = svd.matrixU(); const Mat& v = svd.matrixV(); R = u*v.transpose(); SVD = true; return; } Vec S = eig.eigenvalues().cwiseSqrt(); R = A * eig.eigenvectors() * S.asDiagonal().inverse() * eig.eigenvectors().transpose(); SVD = false; if(std::abs(R.squaredNorm()-3.) > th) { // The computation of the eigenvalues might have diverged. // Fallback to an accurate SVD based decomposiiton method. Eigen::JacobiSVD svd; svd.compute(A, Eigen::ComputeFullU | Eigen::ComputeFullV ); const Mat& u = svd.matrixU(); const Mat& v = svd.matrixV(); R = u*v.transpose(); SVD = true; return; } } // Local step of iterations, computing optimal rotation matrices using Polar decomposition void optimal_rotations_polar() { Eigen::Matrix3d u, v; // orthogonal matrices Eigen::Vector3d w; // singular values Eigen::Matrix3d cov; // covariance matrix Eigen::Matrix3d r; Eigen::JacobiSVD svd; // SVD solver, for non-positive covariance matrices int num_svd = 0; bool SVD = false; // only accumulate ros vertices for ( std::size_t i = 0; i < ros.size(); i++ ) { vertex_descriptor vi = ros[i]; // compute covariance matrix cov.setZero(); in_edge_iterator e, e_end; for (boost::tie(e,e_end) = boost::in_edges(vi, polyhedron); e != e_end; e++) { vertex_descriptor vj = boost::source(*e, polyhedron); Vector pij = original[get(vertex_index_map, vi)] - original[get(vertex_index_map, vj)]; Vector qij = solution[get(vertex_index_map, vi)] - solution[get(vertex_index_map, vj)]; double wij = edge_weight[get(edge_index_map, *e)]; for (int j = 0; j < 3; j++) { for (int k = 0; k < 3; k++) { cov(j, k) += wij*pij[j]*qij[k]; } } } // svd decomposition if (cov.determinant() > 0) { polar_eigen (cov, r, SVD); //polar_newton(cov, r, 1e-4); if(SVD) num_svd++; r.transposeInPlace(); // the optimal rotation matrix should be transpose of decomposition result } else { svd.compute( cov, Eigen::ComputeFullU | Eigen::ComputeFullV ); u = svd.matrixU(); v = svd.matrixV(); w = svd.singularValues(); r = v*u.transpose(); num_svd++; } // checking negative determinant of covariance matrix if ( r.determinant() < 0 ) // back to SVD method { if (cov.determinant() > 0) { svd.compute( cov, Eigen::ComputeFullU | Eigen::ComputeFullV ); u = svd.matrixU(); v = svd.matrixV(); w = svd.singularValues(); num_svd++; } for (int j = 0; j < 3; j++) { int j0 = j; int j1 = (j+1)%3; int j2 = (j1+1)%3; if ( w[j0] <= w[j1] && w[j0] <= w[j2] ) // smallest singular value as j0 { u(0, j0) = - u(0, j0); u(1, j0) = - u(1, j0); u(2, j0) = - u(2, j0); break; } } // re-extract rotation matrix r = v*u.transpose(); } rot_mtr[i] = r; } double svd_percent = (double)(num_svd)/ros.size(); CGAL_TRACE_STREAM << svd_percent*100 << "% percentage SVD decompositions;"; CGAL_TRACE_STREAM << num_svd << " SVD decompositions\n"; } #endif }; } //namespace CGAL #endif // CGAL_DEFORM_MESH_H