\begin{ccRefConcept}{PolynomialTraits_d::TranslateHomogeneous} \ccDefinition Given numerator $a$ and denominator $b$ this \ccc{AdaptableFunctor} translates a \ccc{PolynomialTraits_d::Polynomial_d} with respect to one variable by $a/b$. Note that this functor operates on the polynomial in the univariate view, that is, the polynomial is considered as a univariate polynomial in one specific variable. Moreover, the polynomial is considered as a homogeneous polynomial in that variable. Note that $a$ and $b$ are of type \ccc{PolynomialTraits_d::Coefficient_type}. \ccRefines \ccc{AdaptableFunctor} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Coefficient_type a, PolynomialTraits_d::Coefficient_type b);} { Returns $b^{degree}\cdot p(x+a/b)$, with respect to the outermost variable. } \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, PolynomialTraits_d::Coefficient_type a, PolynomialTraits_d::Coefficient_type b, int i);} { Same as first operator but for variable $x_i$. \ccPrecond $0 \leq i < d$ } %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}