\begin{ccRefConcept}{PolynomialTraits_d::UnivariateContentUpToConstantFactor} \ccDefinition This \ccc{AdaptableUnaryFunction} computes the content of a \ccc{PolynomialTraits_d::Polynomial_d} with respect to the univariate (recursive) view on the polynomial {\em up to a constant factor (utcf)}, that is, it computes the $gcd\_utcf$ of all coefficients with respect to one variable. Remark: This is called \ccc{UnivariateContentUpToConstantFactor} for symmetric reasons with respect to \ccc{PolynomialTraits_d::UnivariateContent} and \ccc{PolynomialTraits_d::MultivariateContent}. However, a concept \ccc{PolynomialTraits_d::MultivariateContentUpToConstantFactor} does not exist since the result is trivial. \ccRefines \ccc{AdaptableUnaryFunction} \ccCreationVariable{fo} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p);} {Computes the content {\em up to a constant factor} of $p$ with respect to the outermost variable $x_{d-1}$. } \ccMethod{result_type operator()(first_argument_type p, int i);} {Computes the content {\em up to a constant factor} of $p$ with respect to variable $x_i$. \ccPrecond $0 \leq i < d$ } %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d::GcdUpToConstantFactor}\\ \end{ccRefConcept}