// Copyright (c) 2005 Tel-Aviv University (Israel). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you may redistribute it under // the terms of the Q Public License version 1.0. // See the file LICENSE.QPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Ron Wein // Baruch Zukerman #ifndef CGAL_ARR_CIRCLE_SEGMENT_TRAITS_2_H #define CGAL_ARR_CIRCLE_SEGMENT_TRAITS_2_H /*! \file * The header file for the Arr_circle_segment_traits_2 class. */ #include #include #include CGAL_BEGIN_NAMESPACE /*! \class * A traits class for maintaining an arrangement of circles. */ template class Arr_circle_segment_traits_2 { public: typedef Kernel_ Kernel; typedef typename Kernel::FT NT; typedef _One_root_point_2 Point_2; typedef typename Point_2::CoordNT CoordNT; typedef _Circle_segment_2 Curve_2; typedef _X_monotone_circle_segment_2 X_monotone_curve_2; typedef Arr_circle_segment_traits_2 Self; // Category tags: typedef Tag_true Has_left_category; typedef Tag_true Has_merge_category; protected: // Type definition for the intersection points mapping. typedef typename X_monotone_curve_2::Intersection_map Intersection_map; Intersection_map inter_map; // Mapping pairs of curve IDs to their // intersection points. bool m_use_cache; public: /*! Default constructor. */ Arr_circle_segment_traits_2 (bool use_intersection_caching = false) : m_use_cache(use_intersection_caching) {} /*! Get the next curve index. */ static unsigned int get_index () { static unsigned int index = 0; return (++index); } /// \name Basic functor definitions. //@{ class Compare_x_2 { public: /*! * Compare the x-coordinates of two points. * \param p1 The first point. * \param p2 The second point. * \return LARGER if x(p1) > x(p2); * SMALLER if x(p1) < x(p2); * EQUAL if x(p1) = x(p2). */ Comparison_result operator() (const Point_2& p1, const Point_2& p2) const { if (p1.identical (p2)) return (EQUAL); return (CGAL::compare (p1.x(), p2.x())); } }; /*! Get a Compare_x_2 functor object. */ Compare_x_2 compare_x_2_object () const { return Compare_x_2(); } class Compare_xy_2 { public: /*! * Compares two points lexigoraphically: by x, then by y. * \param p1 The first point. * \param p2 The second point. * \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2); * SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2); * EQUAL if the two points are equal. */ Comparison_result operator() (const Point_2& p1, const Point_2& p2) const { if (p1.identical (p2)) return (EQUAL); Comparison_result res = CGAL::compare (p1.x(), p2.x()); if (res != EQUAL) return (res); return (CGAL::compare (p1.y(), p2.y())); } }; /*! Get a Compare_xy_2 functor object. */ Compare_xy_2 compare_xy_2_object () const { return Compare_xy_2(); } class Construct_min_vertex_2 { public: /*! * Get the left endpoint of the x-monotone curve (segment). * \param cv The curve. * \return The left endpoint. */ const Point_2& operator() (const X_monotone_curve_2 & cv) const { return (cv.left()); } }; /*! Get a Construct_min_vertex_2 functor object. */ Construct_min_vertex_2 construct_min_vertex_2_object () const { return Construct_min_vertex_2(); } class Construct_max_vertex_2 { public: /*! * Get the right endpoint of the x-monotone curve (segment). * \param cv The curve. * \return The right endpoint. */ const Point_2& operator() (const X_monotone_curve_2 & cv) const { return (cv.right()); } }; /*! Get a Construct_max_vertex_2 functor object. */ Construct_max_vertex_2 construct_max_vertex_2_object () const { return Construct_max_vertex_2(); } class Is_vertical_2 { public: /*! * Check whether the given x-monotone curve is a vertical segment. * \param cv The curve. * \return (true) if the curve is a vertical segment; (false) otherwise. */ bool operator() (const X_monotone_curve_2& cv) const { return (cv.is_vertical()); } }; /*! Get an Is_vertical_2 functor object. */ Is_vertical_2 is_vertical_2_object () const { return Is_vertical_2(); } class Compare_y_at_x_2 { public: /*! * Return the location of the given point with respect to the input curve. * \param cv The curve. * \param p The point. * \pre p is in the x-range of cv. * \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve; * LARGER if y(p) > cv(x(p)), i.e. the point is above the curve; * EQUAL if p lies on the curve. */ Comparison_result operator() (const Point_2& p, const X_monotone_curve_2& cv) const { CGAL_precondition (cv.is_in_x_range (p)); return (cv.point_position (p)); } }; /*! Get a Compare_y_at_x_2 functor object. */ Compare_y_at_x_2 compare_y_at_x_2_object () const { return Compare_y_at_x_2(); } class Compare_y_at_x_right_2 { public: /*! * Compares the y value of two x-monotone curves immediately to the right * of their intersection point. * \param cv1 The first curve. * \param cv2 The second curve. * \param p The intersection point. * \pre The point p lies on both curves, and both of them must be also be * defined (lexicographically) to its right. * \return The relative position of cv1 with respect to cv2 immdiately to * the right of p: SMALLER, LARGER or EQUAL. */ Comparison_result operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2, const Point_2& p) const { // Make sure that p lies on both curves, and that both are defined to its // right (so their right endpoint is lexicographically larger than p). CGAL_precondition (cv1.point_position (p) == EQUAL && cv2.point_position (p) == EQUAL); CGAL_precondition (CGAL::compare (p.x(), cv1.right().x()) != LARGER && CGAL::compare (p.x(), cv2.right().x()) != LARGER); // Compare the two curves immediately to the right of p: return (cv1.compare_to_right (cv2, p)); } }; /*! Get a Compare_y_at_x_right_2 functor object. */ Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const { return Compare_y_at_x_right_2(); } class Compare_y_at_x_left_2 { public: /*! * Compares the y value of two x-monotone curves immediately to the left * of their intersection point. * \param cv1 The first curve. * \param cv2 The second curve. * \param p The intersection point. * \pre The point p lies on both curves, and both of them must be also be * defined (lexicographically) to its left. * \return The relative position of cv1 with respect to cv2 immdiately to * the left of p: SMALLER, LARGER or EQUAL. */ Comparison_result operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2, const Point_2& p) const { // Make sure that p lies on both curves, and that both are defined to its // left (so their left endpoint is lexicographically smaller than p). CGAL_precondition (cv1.point_position (p) == EQUAL && cv2.point_position (p) == EQUAL); CGAL_precondition (CGAL::compare (p.x(), cv1.left().x()) != SMALLER && CGAL::compare (p.x(), cv2.left().x()) != SMALLER); // Compare the two curves immediately to the left of p: return (cv1.compare_to_left (cv2, p)); } }; /*! Get a Compare_y_at_x_left_2 functor object. */ Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const { return Compare_y_at_x_left_2(); } class Equal_2 { public: /*! * Check if the two x-monotone curves are the same (have the same graph). * \param cv1 The first curve. * \param cv2 The second curve. * \return (true) if the two curves are the same; (false) otherwise. */ bool operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2) const { if (&cv1 == &cv2) return (true); return (cv1.equals (cv2)); } /*! * Check if the two points are the same. * \param p1 The first point. * \param p2 The second point. * \return (true) if the two point are the same; (false) otherwise. */ bool operator() (const Point_2& p1, const Point_2& p2) const { return (p1.equals (p2)); } }; /*! Get an Equal_2 functor object. */ Equal_2 equal_2_object () const { return Equal_2(); } //@} /// \name Functor definitions for supporting intersections. //@{ class Make_x_monotone_2 { private: typedef Arr_circle_segment_traits_2 Self; bool m_use_cache; public: Make_x_monotone_2(bool use_cache = false) : m_use_cache(use_cache) {} /*! * Cut the given conic curve (or conic arc) into x-monotone subcurves * and insert them to the given output iterator. * \param cv The curve. * \param oi The output iterator, whose value-type is Object. The returned * objects are all wrappers X_monotone_curve_2 objects. * \return The past-the-end iterator. */ template OutputIterator operator() (const Curve_2& cv, OutputIterator oi) { // Increment the serial number of the curve cv, which will serve as its // unique identifier. unsigned int index = 0; if(m_use_cache) index = Self::get_index(); if (cv.orientation() == COLLINEAR) { // The curve is a line segment. *oi = make_object (X_monotone_curve_2 (cv.supporting_line(), cv.source(), cv.target(), index)); ++oi; return (oi); } // Check the case of a degenrate circle (a point). const typename Kernel::Circle_2& circ = cv.supporting_circle(); CGAL::Sign sign_rad = CGAL::sign (circ.squared_radius()); CGAL_precondition (sign_rad != NEGATIVE); if (sign_rad == ZERO) { // Create an isolated point. *oi = make_object (Point_2 (circ.center().x(), circ.center().y())); ++oi; return (oi); } // The curve is circular: compute the to vertical tangency points // of the supporting circle. Point_2 vpts[2]; unsigned int n_vpts = cv.vertical_tangency_points (vpts); if (cv.is_full()) { CGAL_assertion (n_vpts == 2); // Subdivide the circle into two arcs (an upper and a lower half). *oi = make_object (X_monotone_curve_2 (circ, vpts[0], vpts[1], cv.orientation(), index)); ++oi; *oi = make_object (X_monotone_curve_2 (circ, vpts[1], vpts[0], cv.orientation(), index)); ++oi; } else { // Act according to the number of vertical tangency points. if (n_vpts == 2) { // Subdivide the circular arc into three x-monotone arcs. *oi = make_object (X_monotone_curve_2 (circ, cv.source(), vpts[0], cv.orientation(), index)); ++oi; *oi = make_object (X_monotone_curve_2 (circ, vpts[0], vpts[1], cv.orientation(), index)); ++oi; *oi = make_object (X_monotone_curve_2 (circ, vpts[1], cv.target(), cv.orientation(), index)); ++oi; } else if (n_vpts == 1) { // Subdivide the circular arc into two x-monotone arcs. *oi = make_object (X_monotone_curve_2 (circ, cv.source(), vpts[0], cv.orientation(), index)); ++oi; *oi = make_object (X_monotone_curve_2 (circ, vpts[0], cv.target(), cv.orientation(), index)); ++oi; } else { CGAL_assertion (n_vpts == 0); // The arc is already x-monotone: *oi = make_object (X_monotone_curve_2 (circ, cv.source(), cv.target(), cv.orientation(), index)); ++oi; } } return (oi); } }; /*! Get a Make_x_monotone_2 functor object. */ Make_x_monotone_2 make_x_monotone_2_object () { return Make_x_monotone_2(m_use_cache); } class Split_2 { public: /*! * Split a given x-monotone curve at a given point into two sub-curves. * \param cv The curve to split * \param p The split point. * \param c1 Output: The left resulting subcurve (p is its right endpoint). * \param c2 Output: The right resulting subcurve (p is its left endpoint). * \pre p lies on cv but is not one of its end-points. */ void operator() (const X_monotone_curve_2& cv, const Point_2& p, X_monotone_curve_2& c1, X_monotone_curve_2& c2) const { CGAL_precondition (cv.is_in_x_range (p) && ! p.equals (cv.source()) && ! p.equals (cv.target())); cv.split (p, c1, c2); return; } }; /*! Get a Split_2 functor object. */ Split_2 split_2_object () { return Split_2(); } class Intersect_2 { private: Intersection_map& _inter_map; // The map of intersection points. public: /*! Constructor. */ Intersect_2 (Intersection_map& map) : _inter_map (map) {} /*! * Find the intersections of the two given curves and insert them to the * given output iterator. As two segments may itersect only once, only a * single will be contained in the iterator. * \param cv1 The first curve. * \param cv2 The second curve. * \param oi The output iterator. * \return The past-the-end iterator. */ template OutputIterator operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2, OutputIterator oi) { return (cv1.intersect (cv2, oi, &_inter_map)); } }; /*! Get an Intersect_2 functor object. */ Intersect_2 intersect_2_object () { return (Intersect_2 (inter_map)); } class Are_mergeable_2 { public: /*! * Check whether it is possible to merge two given x-monotone curves. * \param cv1 The first curve. * \param cv2 The second curve. * \return (true) if the two curves are mergeable - if they are supported * by the same line and share a common endpoint; (false) otherwise. */ bool operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2) const { return (cv1.can_merge_with (cv2)); } }; /*! Get an Are_mergeable_2 functor object. */ Are_mergeable_2 are_mergeable_2_object () const { return Are_mergeable_2(); } class Merge_2 { public: /*! * Merge two given x-monotone curves into a single curve. * \param cv1 The first curve. * \param cv2 The second curve. * \param c Output: The merged curve. * \pre The two curves are mergeable, that is they are supported by the * same conic curve and share a common endpoint. */ void operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2, X_monotone_curve_2& c) const { c = cv1; c.merge (cv2); return; } }; /*! Get a Merge_2 functor object. */ Merge_2 merge_2_object () const { return Merge_2(); } class Compare_endpoints_xy_2 { public: /*! * compare lexicogrphic the endpoints of a x-monotone curve. * \param cv the curve * \return SMALLER if the curve is directed right, else return SMALLER */ Comparison_result operator()(const X_monotone_curve_2& cv) { if(cv.is_directed_right()) return(SMALLER); return (LARGER); } }; /*! Get a Compare_endpoints_xy_2 functor object. */ Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const { return Compare_endpoints_xy_2(); } class Construct_opposite_2 { public: /*! * construct an opposite x-monotone curve. * \param cv the curve * \return an opposite x-monotone curve. */ X_monotone_curve_2 operator()(const X_monotone_curve_2& cv) { return cv.construct_opposite(); } }; /*! Get a Construct_opposite_2 functor object. */ Construct_opposite_2 construct_opposite_2_object() const { return Construct_opposite_2(); } }; CGAL_END_NAMESPACE #endif