\begin{ccRefConcept}{PolynomialTraits_d::SturmHabichtSequence} \textbf{Note:} This functor is optional! \ccDefinition Computes the Sturm-Habicht sequence (aka the signed subresultant sequence) of a polynomials $f$ of type \ccc{PolynomialTraits_d::Polynomial_d} with respect a certain variable $x_i$. The Sturm-Habicht sequence is similar to the polynomial subresultant sequence of $f$ and its derivative $f':=\frac{\partial f}{\partial x_i}$ with respect to $x_i$. The implementation is based on the following definition: Let $n:=\deg f$ and $\delta_k:=(-1)^{k(k+1)/2}$. For $k\in\{0,\ldots,n\}$, the {\it $k$-th Sturm-Habicht polynomial} of $f$ is defined as: \begin{ccTexOnly} $$\mathrm{Stha}_k(f)=\left\{\begin{array}{cl} f & \textrm{if\ } k=n\\ f' & \textrm{if\ } k=n-1\\ \delta_{n-k-1}\mathrm{Sres}_k(f,f') &\textrm{if\ } 0\leq k\leq n-2 \end{array}\color{white}\right\}\color{black}$$ \end{ccTexOnly} \begin{ccHtmlOnly}