// Copyright (c) 2007-2020 INRIA (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s) : Jackson Campolattaro, Simon Giraudot, Cédric Portaneri, Tong Zhao #ifndef CGAL_ORTHTREE_H #define CGAL_ORTHTREE_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { /*! \ingroup PkgOrthtreeClasses \brief A data structure using an axis-aligned hybercubic decomposition of dD space for efficient point access and computations. \details It builds a hierarchy of nodes which subdivide the space based on a collection of points. Each node represents an axis-aligned hypercubic region of space. A node contains the range of points that are present in the region it defines, and it may contain \f$2^{dim}\f$ other nodes which further subdivide the region. \sa `CGAL::Quadtree` \sa `CGAL::Octree` \tparam Traits_ must be a model of `OrthtreeTraits` \tparam PointRange_ must be a model of range whose value type is the key type of `PointMap_` \tparam PointMap_ must be a model of `ReadablePropertyMap` whose value type is `Traits_::Point_d` */ template > class Orthtree { public: /// \name Template Types /// @{ typedef Traits_ Traits; ///< Geometry traits typedef PointRange_ PointRange; ///< Point range typedef PointMap_ PointMap; ///< Point map /// @} /// \name Traits Types /// @{ typedef typename Traits::Dimension Dimension; ///< Dimension of the tree typedef typename Traits::FT FT; ///< Number type. typedef typename Traits::Point_d Point; ///< Point type. typedef typename Traits::Bbox_d Bbox; ///< Bounding box type. typedef typename Traits::Sphere_d Sphere; ///< Sphere type. /// \cond SKIP_IN_MANUAL typedef typename Traits::Array Array; ///< Array type. typedef typename Traits::Construct_point_d_from_array Construct_point_d_from_array; typedef typename Traits::Construct_bbox_d Construct_bbox_d; /// \endcond /// @} /// \name Public Types /// @{ /*! * \brief Self typedef for convenience. */ typedef Orthtree Self; /*! * \brief Degree of the tree (number of children of non-leaf nodes). */ typedef Dimension_tag<(2 << (Dimension::value - 1))> Degree; /*! * \brief Index of a given node in the tree; the root always has index 0. */ typedef std::size_t Node_index; typedef Properties::Property_container Node_property_container; /*! * \brief Optional index of a node in the tree. */ typedef boost::optional Maybe_node_index; /*! * \brief The Sub-tree / Orthant type. */ class Node; /*! * \brief A predicate that determines whether a node must be split when refining a tree. */ typedef std::function Split_predicate; /*! * \brief A model of `ConstRange` whose value type is `Node`. */ #ifdef DOXYGEN_RUNNING typedef unspecified_type Node_range; typedef unspecified_type Node_index_range; #else typedef boost::iterator_range> Node_range; typedef boost::iterator_range> Node_index_range; #endif /// \cond SKIP_IN_MANUAL /*! * \brief A function that determines the next node in a traversal given the current one. */ typedef std::function Node_traversal_method_const; /// \endcond /// \cond SKIP_IN_MANUAL typedef typename PointRange::iterator Range_iterator; typedef typename std::iterator_traits::value_type Range_type; typedef Orthtrees::internal::Cartesian_ranges Cartesian_ranges; /// \endcond /// @} private: // data members : Traits m_traits; /* the tree traits */ PointRange& m_range; /* input point range */ PointMap m_point_map; /* property map: `value_type of InputIterator` -> `Point` (Position) */ std::vector m_nodes; /* nodes of the tree; root is always at index 0 */ Node_property_container m_node_properties; Node_property_container::Array> &m_node_points; Node_property_container::Array &m_node_depths; Node_property_container::Array> &m_node_coordinates; Node_property_container::Array &m_node_parents; Node_property_container::Array &m_node_children; Point m_bbox_min; /* input bounding box min value */ std::vector m_side_per_depth; /* side length per node's depth */ Cartesian_ranges cartesian_range; /* a helper to easily iterator on coordinates of points */ public: /// \name Constructor /// @{ /*! \brief creates an orthtree from a collection of points. The constructed orthtree has a root node, with no children, that contains the points passed. That root node has a bounding box that encloses all of the points passed, with padding according to the `enlarge_ratio`. That root node is built as a `n`-cube (square in 2D, cube in 3D, etc.) whose edge size is the longest bounding box edge multiplied by `enlarge_ratio`. Using an `enlarge_ratio>1.0` prevents some points from being exactly on the border of some cells, which can lead to over-refinement. This single-node orthtree is valid and compatible with all Orthtree functionality, but any performance benefits are unlikely to be realized until `refine()` is called. \warning The input point range is not copied. It is used directly and is rearranged by the `Orthtree`. Altering the point range after creating the orthtree might leave it in an invalid state. \param point_range input point range. \param point_map property map to access the input points. \param enlarge_ratio ratio to which the bounding box should be enlarged. \param traits the traits object. */ Orthtree(PointRange& point_range, PointMap point_map = PointMap(), const FT enlarge_ratio = 1.2, Traits traits = Traits()) : m_traits(traits), m_range(point_range), m_point_map(point_map), m_node_points(m_node_properties.add_property>("points")), m_node_depths(m_node_properties.add_property("depths", 0)), m_node_coordinates(m_node_properties.add_property>("coordinates")), m_node_parents(m_node_properties.add_property("parents")), m_node_children(m_node_properties.add_property("children")) { m_nodes.emplace_back(); Array bbox_min; Array bbox_max; // init bbox with first values found { const Point& p = get(m_point_map, *(point_range.begin())); std::size_t i = 0; for (const FT& x: cartesian_range(p)) { bbox_min[i] = x; bbox_max[i] = x; ++i; } } for (const Range_type& r: point_range) { const Point& p = get(m_point_map, r); std::size_t i = 0; for (const FT& x: cartesian_range(p)) { bbox_min[i] = (std::min)(x, bbox_min[i]); bbox_max[i] = (std::max)(x, bbox_max[i]); ++i; } } Array bbox_centroid; FT max_length = FT(0); for (std::size_t i = 0; i < Dimension::value; ++i) { bbox_centroid[i] = (bbox_min[i] + bbox_max[i]) / FT(2); max_length = (std::max)(max_length, bbox_max[i] - bbox_min[i]); } max_length *= enlarge_ratio / FT(2); for (std::size_t i = 0; i < Dimension::value; ++i) { bbox_min[i] = bbox_centroid[i] - max_length; bbox_max[i] = bbox_centroid[i] + max_length; } Construct_point_d_from_array construct_point_d_from_array = m_traits.construct_point_d_from_array_object(); // save orthtree attributes m_bbox_min = construct_point_d_from_array(bbox_min); m_side_per_depth.push_back(bbox_max[0] - bbox_min[0]); points(root()) = {point_range.begin(), point_range.end()}; } /// @} /// \cond SKIP_IN_MANUAL // copy constructor Orthtree(const Orthtree& other) : m_traits(other.m_traits), m_range(other.m_range), m_point_map(other.m_point_map), m_nodes(other.m_nodes), m_bbox_min(other.m_bbox_min), m_side_per_depth(other.m_side_per_depth), m_node_properties(other.m_node_properties), m_node_points(m_node_properties.get_property>("points")), m_node_depths(m_node_properties.get_property("depths")), m_node_coordinates(m_node_properties.get_property>("coordinates")), m_node_parents(m_node_properties.get_property("parents")), m_node_children(m_node_properties.get_property("children")) {} // move constructor Orthtree(Orthtree&& other): m_traits(other.m_traits), m_range(other.m_range), m_point_map(other.m_point_map), m_nodes(std::move(other.m_nodes)), m_bbox_min(other.m_bbox_min), m_side_per_depth(other.m_side_per_depth), m_node_properties(other.m_node_properties), m_node_points(m_node_properties.get_property>("points")), m_node_depths(m_node_properties.get_property("depths")), m_node_coordinates(m_node_properties.get_property>("coordinates")), m_node_parents(m_node_properties.get_property("parents")), m_node_children(m_node_properties.get_property("children")) { // todo: makes sure moved-from is still valid. Maybe this shouldn't be necessary. other.m_nodes.emplace_back(); } // Non-necessary but just to be clear on the rule of 5: // assignment operators deleted (PointRange is a ref) Orthtree& operator=(const Orthtree& other) = delete; Orthtree& operator=(Orthtree&& other) = delete; // move constructor /// \endcond /// \name Tree Building /// @{ /*! \brief recursively subdivides the orthtree until it meets the given criteria. The split predicate is a `std::function` that takes a `Node` and returns a Boolean value (where `true` implies that a `Node` needs to be split, `false` that the `Node` should be a leaf). todo: split predicate should work with node indices! This function may be called several times with different predicates: in that case, nodes already split are left unaltered, while nodes that were not split and for which `split_predicate` returns `true` are split. \param split_predicate determines whether or not a node needs to be subdivided. */ void refine(const Split_predicate& split_predicate) { // Initialize a queue of nodes that need to be refined std::queue todo; todo.push(0); // Process items in the queue until it's consumed fully while (!todo.empty()) { // Get the next element auto current = todo.front(); todo.pop(); // Check if this node needs to be processed if (split_predicate(m_nodes[current])) { // Check if we've reached a new max depth if (depth(current) == depth()) { // Update the side length map m_side_per_depth.push_back(*(m_side_per_depth.end() - 1) / 2); } // Split the node, redistributing its points to its children split(current); } // Check if the node has children which need to be processed if (!is_leaf(current)) { // Process each of its children for (int i = 0; i < Degree::value; ++i) todo.push(child(current, i)); } } } /*! \brief Convenience overload that refines an orthtree using a maximum depth and maximum number of points in a node as split predicate. This is equivalent to calling `refine(Orthtrees::Maximum_depth_and_maximum_number_of_inliers(max_depth, bucket_size))`. The refinement is stopped as soon as one of the conditions is violated: if a node has more inliers than `bucket_size` but is already at `max_depth`, it is not split. Similarly, a node that is at a depth smaller than `max_depth` but already has fewer inliers than `bucket_size`, it is not split. \param max_depth deepest a tree is allowed to be (nodes at this depth will not be split). \param bucket_size maximum points a node is allowed to contain. */ void refine(size_t max_depth = 10, size_t bucket_size = 20) { refine(Orthtrees::Maximum_depth_and_maximum_number_of_inliers(max_depth, bucket_size)); } /*! \brief refines the orthtree such that the difference of depth between two immediate neighbor leaves is never more than 1. */ void grade() { // Collect all the leaf nodes std::queue leaf_nodes; for (Node_index leaf: traverse_indices(Orthtrees::Leaves_traversal(*this))) { leaf_nodes.push(leaf); } // Iterate over the nodes while (!leaf_nodes.empty()) { // Get the next node Node_index node = leaf_nodes.front(); leaf_nodes.pop(); // Skip this node if it isn't a leaf anymore if (!is_leaf(node)) continue; // Iterate over each of the neighbors for (int direction = 0; direction < 6; ++direction) { // Get the neighbor auto neighbor = adjacent_node(node, direction); // If it doesn't exist, skip it if (!neighbor) continue; // Skip if this neighbor is a direct sibling (it's guaranteed to be the same depth) // TODO: This check might be redundant, if it doesn't affect performance maybe I could remove it if (parent(neighbor.get()) == parent(node)) continue; // If it's already been split, skip it if (!is_leaf(neighbor.get())) continue; // Check if the neighbor breaks our grading rule // TODO: could the rule be parametrized? if ((depth(node) - depth(neighbor.get())) > 1) { // Split the neighbor split(neighbor.get()); // Add newly created children to the queue for (int i = 0; i < Degree::value; ++i) { leaf_nodes.push(child(neighbor.get(), i)); } } } } } /// @} /// \name Accessors /// @{ /*! \brief provides read-only access to the root node, and by extension the rest of the tree. \return a const reference to the root node of the tree. */ // todo: return index instead of ref Node_index root() const { return 0; } Node_index index(const Node& node) const { return std::distance(m_nodes.data(), &node); } Maybe_node_index index(const Node* node) const { if (node == nullptr) return {}; return index(*node); } const Node& operator[](Node_index index) const { return m_nodes[index]; } Node& operator[](Node_index index) { return m_nodes[index]; } /*! \brief returns the deepest level reached by a leaf node in this tree (root being level 0). */ std::size_t depth() const { return m_side_per_depth.size() - 1; } /*! \brief constructs a node range using a tree-traversal function. This method allows to iterate on the nodes of the tree with a user-selected order (preorder, postorder, leaves-only, etc.). \tparam Traversal model of `OrthtreeTraversal` that provides functions compatible with the type of the orthree \param traversal the instance of `Traversal` used \return a forward input iterator over the nodes of the tree */ template Node_range traverse(Traversal traversal) const { auto first = traversal.first_index(); auto next = [=](const Self& tree, Node_index index) -> Maybe_node_index { return traversal.next_index(index); }; return boost::make_iterator_range(Traversal_iterator(*this, first, next), Traversal_iterator()); } template Node_index_range traverse_indices(Traversal traversal) const { Node_index first = traversal.first_index(); auto next = [=](const Self& tree, Node_index index) -> Maybe_node_index { return traversal.next_index(index); }; return boost::make_iterator_range(Index_traversal_iterator(*this, first, next), Index_traversal_iterator()); } // todo: document this convenience function template Node_range traverse(Args&& ...args) const { return traverse({*this, std::forward(args)...}); } template Node_index_range traverse_indices(Args&& ...args) const { return traverse_indices({*this, std::forward(args)...}); } /*! \brief constructs the bounding box of a node. \note The object constructed is not the bounding box of the point subset inside the node, but the bounding box of the node itself (cubic). */ Bbox bbox(const Node& node) const { return bbox(index(node)); } Bbox bbox(Node_index n) const { // Determine the side length of this node FT size = m_side_per_depth[depth(n)]; // Determine the location this node should be split Array min_corner; Array max_corner; for (int i = 0; i < Dimension::value; i++) { min_corner[i] = m_bbox_min[i] + (global_coordinates(n)[i] * size); max_corner[i] = min_corner[i] + size; } // Create the bbox Construct_bbox_d construct_bbox = m_traits.construct_bbox_d_object(); return construct_bbox(min_corner, max_corner); } /// @} /// \name Queries /// @{ /*! \brief finds the leaf node which contains the point `p`. Traverses the orthtree and finds the deepest cell that has a domain enclosing the point passed. The point passed must be within the region enclosed by the orthtree (bbox of the root node). \param point query point. \return the node which contains the point. */ const Node_index locate(const Point& point) const { // Make sure the point is enclosed by the orthtree CGAL_precondition (CGAL::do_intersect(point, bbox(root()))); // Start at the root node Node_index node_for_point = root(); // Descend the tree until reaching a leaf node while (!is_leaf(node_for_point)) { // Find the point to split around Point center = barycenter(node_for_point); // Find the index of the correct sub-node typename Node::Local_coordinates local_coords; std::size_t dimension = 0; for (const auto& r: cartesian_range(center, point)) local_coords[dimension++] = (get < 0 > (r) < get < 1 > (r)); // Find the correct sub-node of the current node node_for_point = child(node_for_point, local_coords.to_ulong()); } // Return the result return node_for_point; } /*! \brief finds the `k` nearest neighbors of `query`. Nearest neighbors are outputted in order of increasing distance to `query`. \tparam OutputIterator a model of `OutputIterator` that accept `Point_d` objects. \param query query point. \param k number of neighbors. \param output output iterator. */ template OutputIterator nearest_neighbors(const Point& query, std::size_t k, OutputIterator output) const { Sphere query_sphere(query, (std::numeric_limits::max)()); return nearest_k_neighbors_in_radius(query_sphere, k, output); } /*! \brief finds the points in `sphere`. Nearest neighbors are outputted in order of increasing distance to the center of `sphere`. \tparam OutputIterator a model of `OutputIterator` that accept `Point_d` objects. \param query query sphere. \param output output iterator. */ template OutputIterator nearest_neighbors(const Sphere& query, OutputIterator output) const { Sphere query_sphere = query; return nearest_k_neighbors_in_radius(query_sphere, (std::numeric_limits::max)(), output); } /*! \brief finds the leaf nodes that intersect with any primitive. \note this function requires the function `bool CGAL::do_intersect(QueryType, Traits::Bbox_d)` to be defined. This function finds all the intersecting nodes and returns them as const pointers. \tparam Query the primitive class (e.g. sphere, ray) \tparam OutputIterator a model of `OutputIterator` that accepts `Node` objects \param query the intersecting primitive. \param output output iterator. */ template OutputIterator intersected_nodes(const Query& query, OutputIterator output) const { return intersected_nodes_recursive(query, root(), output); } /// @} /// \name Operators /// @{ /*! \brief compares the topology of the orthtree with that of `rhs`. Trees may be considered equivalent even if they contain different points. Equivalent trees must have the same bounding box and the same node structure. Node structure is evaluated by comparing the root nodes using the node equality operator. */ bool operator==(const Self& rhs) const { // Identical trees should have the same bounding box if (rhs.m_bbox_min != m_bbox_min || rhs.m_side_per_depth[0] != m_side_per_depth[0]) return false; // Identical trees should have the same depth if (rhs.depth() != depth()) return false; // If all else is equal, recursively compare the trees themselves return is_topology_equal(*this, rhs); } /*! \brief compares the topology of the orthtree with that of `rhs`. */ bool operator!=(const Self& rhs) const { return !operator==(rhs); } /// @} /// \name Node Access /// @{ bool is_leaf(Node_index n) const { return m_nodes[n].is_leaf(); } bool is_root(Node_index n) const { return n == 0; } std::size_t depth(Node_index n) const { return m_nodes[n].depth(); } typename Node::Point_range& points(Node_index n) { return m_nodes[n].points(); } const typename Node::Point_range& points(Node_index n) const { return m_nodes[n].points(); } typename Node::Global_coordinates global_coordinates(Node_index n) const { return m_nodes[n].global_coordinates(); } typename Node::Local_coordinates local_coordinates(Node_index n) const { return m_nodes[n].local_coordinates(); } /*! \brief returns this node's parent. \pre `!is_root()` */ Node_index parent(Node_index node) const { CGAL_precondition (!is_root(node)); return m_nodes[node].m_parent_index.get(); } Node_index child(Node_index node, std::size_t i) const { CGAL_precondition (!is_leaf(node)); return m_nodes[node].m_children_index.get() + i; } const Maybe_node_index next_sibling(Node_index n) const { // Root node has no siblings if (is_root(n)) return {}; // Find out which child this is std::size_t local_coords = local_coordinates(n).to_ulong(); // todo: add local_coordinates(n) helper // The last child has no more siblings if (int(local_coords) == Node::Degree::value - 1) return {}; // The next sibling is the child of the parent with the following local coordinates return child(parent(n), local_coords + 1); } const Maybe_node_index next_sibling_up(Node_index n) const { // the root node has no next sibling up if (n == 0) return {}; auto up = Maybe_node_index{parent(n)}; while (up) { if (next_sibling(up.get())) return {next_sibling(up.get())}; up = is_root(up.get()) ? Maybe_node_index{} : Maybe_node_index{parent(up.get())}; } return {}; } Node_index deepest_first_child(Node_index n) const { auto first = n; while (!is_leaf(first)) first = child(first, 0); return first; } Maybe_node_index first_child_at_depth(Node_index n, std::size_t d) const { std::queue todo; todo.push(n); while (!todo.empty()) { Node_index node = todo.front(); todo.pop(); if (depth(node) == d) return node; if (!is_leaf(node)) for (int i = 0; i < Node::Degree::value; ++i) todo.push(child(node, i)); } return {}; } /*! \brief splits the node into subnodes. Only leaf nodes should be split. When a node is split it is no longer a leaf node. A number of `Degree::value` children are constructed automatically, and their values are set. Contents of this node are _not_ propagated automatically. It is the responsibility of the caller to redistribute the points contained by a node after splitting */ void split(Node_index n) { // Make sure the node hasn't already been split CGAL_precondition (is_leaf(n)); // Split the node to create children using Local_coordinates = typename Node::Local_coordinates; for (int i = 0; i < Degree::value; i++) { m_nodes.emplace_back(n, global_coordinates(n), depth(n) + 1, Local_coordinates{i}); } // todo: this assumes that the new nodes are always allocated at the end m_nodes[n].m_children_index = m_nodes.size() - Degree::value; // Find the point around which the node is split Point center = barycenter(n); // Add the node's points to its children reassign_points(n, points(n).begin(), points(n).end(), center); } /*! * \brief eliminates this node's children, making it a leaf node. * * When a node is un-split, its children are automatically deleted. * After un-splitting a node it will be considered a leaf node. * Idempotent, un-splitting a leaf node has no effect. */ void unsplit(Node_index n) { m_nodes[n].m_children_index.reset(); // todo: the child nodes should be de-allocated! } Point barycenter(Node_index n) const { // Determine the side length of this node FT size = m_side_per_depth[depth(n)]; // Determine the location this node should be split Array bary; std::size_t i = 0; for (const FT& f: cartesian_range(m_bbox_min)) { bary[i] = FT(global_coordinates(n)[i]) * size + size / FT(2) + f; ++i; } // Convert that location into a point Construct_point_d_from_array construct_point_d_from_array = m_traits.construct_point_d_from_array_object(); return construct_point_d_from_array(bary); } static bool is_topology_equal(Node_index lhsNode, const Self& lhsTree, Node_index rhsNode, const Self& rhsTree) { // If one node is a leaf, and the other isn't, they're not the same if (lhsTree.is_leaf(lhsNode) != rhsTree.is_leaf(rhsNode)) return false; // If both nodes are non-leaf if (!lhsTree.is_leaf(lhsNode)) { // Check all the children for (int i = 0; i < Degree::value; ++i) { // If any child cell is different, they're not the same if (!is_topology_equal(lhsTree.child(lhsNode, i), lhsTree, rhsTree.child(rhsNode, i), rhsTree)) return false; } } return (lhsTree.global_coordinates(lhsNode) == rhsTree.global_coordinates(rhsNode)); } static bool is_topology_equal(const Self& lhs, const Self& rhs) { return is_topology_equal(lhs.root(), lhs, rhs.root(), rhs); } /*! \brief finds the directly adjacent node in a specific direction \pre `!is_null()` \pre `direction.to_ulong < 2 * Dimension::value` Adjacent nodes are found according to several properties: - adjacent nodes may be larger than the seek node, but never smaller - a node has at most `2 * Dimension::value` different adjacent nodes (in 3D: left, right, up, down, front, back) - adjacent nodes are not required to be leaf nodes Here's a diagram demonstrating the concept for a Quadtree: ``` +---------------+---------------+ | | | | | | | | | | A | | | | | | | | | | | +-------+-------+---+---+-------+ | | | | | | | A | (S) +---A---+ | | | | | | | +---+---+-------+---+---+-------+ | | | | | | +---+---+ A | | | | | | | | | +---+---+-------+-------+-------+ ``` - (S) : Seek node - A : Adjacent node Note how the top adjacent node is larger than the seek node. The right adjacent node is the same size, even though it contains further subdivisions. This implementation returns the adjacent node if it's found. If there is no adjacent node in that direction, it returns a null node. \param direction which way to find the adjacent node relative to this one. Each successive bit selects the direction for the corresponding dimension: for an Octree in 3D, 010 means: negative direction in X, position direction in Y, negative direction in Z. \return the index of the adjacent node if it exists, nothing otherwise. */ Maybe_node_index adjacent_node(Node_index n, typename Node::Local_coordinates direction) const { // Direction: LEFT RIGHT DOWN UP BACK FRONT // direction: 000 001 010 011 100 101 // Nodes only have up to 2*dim different adjacent nodes (since cubes have 6 sides) CGAL_precondition(direction.to_ulong() < Dimension::value * 2); // The root node has no adjacent nodes! if (is_root(n)) return {}; // The least significant bit indicates the sign (which side of the node) bool sign = direction[0]; // The first two bits indicate the dimension/axis (x, y, z) uint8_t dimension = uint8_t((direction >> 1).to_ulong()); // Create an offset so that the bit-significance lines up with the dimension (e.g. 1, 2, 4 --> 001, 010, 100) int8_t offset = (uint8_t) 1 << dimension; // Finally, apply the sign to the offset offset = (sign ? offset : -offset); // Check if this child has the opposite sign along the direction's axis if (local_coordinates(n)[dimension] != sign) { // This means the adjacent node is a direct sibling, the offset can be applied easily! return {child(parent(n), local_coordinates(n).to_ulong() + offset)}; } // Find the parent's neighbor in that direction, if it exists auto adjacent_node_of_parent = adjacent_node(parent(n), direction); // If the parent has no neighbor, then this node doesn't have one if (!adjacent_node_of_parent) return {}; // If the parent's adjacent node has no children, then it's this node's adjacent node if (is_leaf(adjacent_node_of_parent.get())) return adjacent_node_of_parent; // Return the nearest node of the parent by subtracting the offset instead of adding return {child(adjacent_node_of_parent.get(), local_coordinates(n).to_ulong() - offset)}; } /*! \brief equivalent to `adjacent_node()`, with an adjacency direction rather than a bitset. */ Maybe_node_index adjacent_node(Node_index n, typename Node::Adjacency adjacency) const { return adjacent_node(n, std::bitset(static_cast(adjacency))); } /// @} private: // functions : void reassign_points(Node_index n, Range_iterator begin, Range_iterator end, const Point& center, std::bitset coord = {}, std::size_t dimension = 0) { // Root case: reached the last dimension if (dimension == Dimension::value) { points(child(n, coord.to_ulong())) = {begin, end}; return; } // Split the point collection around the center point on this dimension Range_iterator split_point = std::partition( begin, end, [&](const Range_type& a) -> bool { // This should be done with cartesian iterator, // but it seems complicated to do efficiently return (get(m_point_map, a)[int(dimension)] < center[int(dimension)]); } ); // Further subdivide the first side of the split std::bitset coord_left = coord; coord_left[dimension] = false; reassign_points(n, begin, split_point, center, coord_left, dimension + 1); // Further subdivide the second side of the split std::bitset coord_right = coord; coord_right[dimension] = true; reassign_points(n, split_point, end, center, coord_right, dimension + 1); } bool do_intersect(Node_index n, const Sphere& sphere) const { // Create a cubic bounding box from the node Bbox node_cube = bbox(n); // Check for intersection between the node and the sphere return CGAL::do_intersect(node_cube, sphere); } // TODO: There has to be a better way than using structs like these! struct Point_with_distance { Point point; FT distance; }; struct Node_index_with_distance { Node_index index; FT distance; Node_index_with_distance(const Node_index& index, const FT& distance) : index(index), distance(distance) {} }; void nearest_k_neighbors_recursive(Sphere& search_bounds, Node_index node, std::vector& results, FT epsilon = 0) const { // Check whether the node has children if (is_leaf(node)) { // Base case: the node has no children // Loop through each of the points contained by the node // Note: there might be none, and that should be fine! for (auto point_index: points(node)) { // Retrieve each point from the orthtree's point map auto point = get(m_point_map, point_index); // Pair that point with its distance from the search point Point_with_distance current_point_with_distance = {point, squared_distance(point, search_bounds.center())}; // Check if the new point is within the bounds if (current_point_with_distance.distance < search_bounds.squared_radius()) { // Check if the results list is full if (results.size() == results.capacity()) { // Delete a point if we need to make room results.pop_back(); } // Add the new point results.push_back(current_point_with_distance); // Sort the list std::sort(results.begin(), results.end(), [=](auto& left, auto& right) { return left.distance < right.distance; }); // Check if the results list is full if (results.size() == results.capacity()) { // Set the search radius search_bounds = Sphere(search_bounds.center(), results.back().distance + epsilon); } } } } else { // Recursive case: the node has children // Create a list to map children to their distances std::vector children_with_distances; children_with_distances.reserve(Degree::value); // Fill the list with child nodes for (int i = 0; i < Degree::value; ++i) { auto child_node = child(node, i); // Add a child to the list, with its distance children_with_distances.emplace_back( child_node, CGAL::squared_distance(search_bounds.center(), barycenter(child_node)) ); } // Sort the children by their distance from the search point std::sort(children_with_distances.begin(), children_with_distances.end(), [=](auto& left, auto& right) { return left.distance < right.distance; }); // Loop over the children for (auto child_with_distance: children_with_distances) { // Check whether the bounding box of the child intersects with the search bounds if (do_intersect(child_with_distance.index, search_bounds)) { // Recursively invoke this function nearest_k_neighbors_recursive(search_bounds, child_with_distance.index, results); } } } } template Node_output_iterator intersected_nodes_recursive(const Query& query, Node_index node, Node_output_iterator output) const { // Check if the current node intersects with the query if (CGAL::do_intersect(query, bbox(node))) { // if this node is a leaf, then it's considered an intersecting node if (is_leaf(node)) { // todo: output iterator should hold indices instead of pointers *output++ = node; return output; } // Otherwise, each of the children need to be checked for (int i = 0; i < Degree::value; ++i) { intersected_nodes_recursive(query, child(node, i), output); } } return output; } /*! \brief finds the `k` points within a specific radius that are nearest to the center of `query_sphere`. This function guarantees that there are no closer points than the ones returned, but it does not guarantee that it will return at least `k` points. For a query where the search radius encloses `k` or fewer points, all enclosed points will be returned. If the search radius is too small, no points may be returned. This function is useful when the user already knows how sparse the points are, or if they do not care about points that are too far away. Setting a small radius may have performance benefits. \tparam OutputIterator must be a model of `OutputIterator` that accepts points \param query_sphere the region to search within \param k the number of points to find \param output the output iterator to add the found points to (in order of increasing distance) */ template OutputIterator nearest_k_neighbors_in_radius(Sphere& query_sphere, std::size_t k, OutputIterator output) const { // Create an empty list of points std::vector points_list; if (k != (std::numeric_limits::max)()) points_list.reserve(k); // Invoking the recursive function adds those points to the vector (passed by reference) nearest_k_neighbors_recursive(query_sphere, root(), points_list); // Add all the points found to the output for (auto& item: points_list) *output++ = item.point; return output; } public: /// \cond SKIP_IN_MANUAL void dump_to_polylines(std::ostream& os) const { for (const Node& n: traverse()) if (n.is_leaf()) { Bbox box = bbox(n); dump_box_to_polylines(box, os); } } void dump_box_to_polylines(const Bbox_2& box, std::ostream& os) const { // dump in 3D for visualisation os << "5 " << box.xmin() << " " << box.ymin() << " 0 " << box.xmin() << " " << box.ymax() << " 0 " << box.xmax() << " " << box.ymax() << " 0 " << box.xmax() << " " << box.ymin() << " 0 " << box.xmin() << " " << box.ymin() << " 0" << std::endl; } void dump_box_to_polylines(const Bbox_3& box, std::ostream& os) const { // Back face os << "5 " << box.xmin() << " " << box.ymin() << " " << box.zmin() << " " << box.xmin() << " " << box.ymax() << " " << box.zmin() << " " << box.xmax() << " " << box.ymax() << " " << box.zmin() << " " << box.xmax() << " " << box.ymin() << " " << box.zmin() << " " << box.xmin() << " " << box.ymin() << " " << box.zmin() << std::endl; // Front face os << "5 " << box.xmin() << " " << box.ymin() << " " << box.zmax() << " " << box.xmin() << " " << box.ymax() << " " << box.zmax() << " " << box.xmax() << " " << box.ymax() << " " << box.zmax() << " " << box.xmax() << " " << box.ymin() << " " << box.zmax() << " " << box.xmin() << " " << box.ymin() << " " << box.zmax() << std::endl; // Traversal edges os << "2 " << box.xmin() << " " << box.ymin() << " " << box.zmin() << " " << box.xmin() << " " << box.ymin() << " " << box.zmax() << std::endl; os << "2 " << box.xmin() << " " << box.ymax() << " " << box.zmin() << " " << box.xmin() << " " << box.ymax() << " " << box.zmax() << std::endl; os << "2 " << box.xmax() << " " << box.ymin() << " " << box.zmin() << " " << box.xmax() << " " << box.ymin() << " " << box.zmax() << std::endl; os << "2 " << box.xmax() << " " << box.ymax() << " " << box.zmin() << " " << box.xmax() << " " << box.ymax() << " " << box.zmax() << std::endl; } friend std::ostream& operator<<(std::ostream& os, const Self& orthtree) { // Create a range of nodes auto nodes = orthtree.traverse(Orthtrees::Preorder_traversal(orthtree)); // Iterate over the range for (auto& n: nodes) { // Show the depth for (int i = 0; i < n.depth(); ++i) os << ". "; // Print the node os << n << std::endl; } return os; } /// \endcond }; // end class Orthtree } // namespace CGAL #include #endif // CGAL_ORTHTREE_H