// Copyright (c) 2007-2008 INRIA (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Tong Zhao, Cédric Portaneri #ifndef CGAL_OCTREE_3_H #define CGAL_OCTREE_3_H /* * Not present or relevant for benchmarking */ //#include #include #include #include #include #include #include #include #include /* * These headers were not included here originally * Adding them was necessary to make this header self sufficient */ #include #include #include #include #include #include #include #include namespace CGAL { template class Octree { public: // types : typedef Octree_node Node; typedef typename Kernel::FT FT; typedef typename Kernel::Point_3 Point; typedef typename Kernel::Vector_3 Vector; typedef typename Kernel::Iso_cuboid_3 Iso_cuboid; typedef typename PointRange::const_iterator InputIterator; typedef typename std::list IterList; private: // data members : Node m_root; /* root node of the octree */ uint8_t m_max_depth_reached = 0; /* octree actual highest depth reached */ PointRange &m_ranges; /* input point range */ PointMap m_points_map; /* property map: `value_type of InputIterator` -> `Point` (Position) */ Point m_bbox_min; /* input bounding box min value */ FT m_bbox_side; /* input bounding box side length (cube) */ std::vector m_side_per_depth; /* side length per node's depth */ std::vector m_unit_per_depth; /* number of unit node (smallest) inside one node for each depth for one axis */ public: // functions : Octree( PointRange &pwn, PointMap &point_map, const FT enlarge_ratio = 1.2) : m_ranges(pwn), m_points_map(point_map) { // compute bounding box that encloses all points Iso_cuboid bbox = CGAL::bounding_box(boost::make_transform_iterator (m_ranges.begin(), CGAL::Property_map_to_unary_function( m_points_map)), boost::make_transform_iterator (m_ranges.end(), CGAL::Property_map_to_unary_function( m_points_map))); // Find the center point of the box Point bbox_centroid = midpoint(bbox.min(), bbox.max()); // scale bounding box to add padding bbox = bbox.transform(Aff_transformation_3(SCALING, enlarge_ratio)); // Convert the bounding box into a cube FT x_len = bbox.xmax() - bbox.xmin(); FT y_len = bbox.ymax() - bbox.ymin(); FT z_len = bbox.zmax() - bbox.zmin(); FT max_len = (x_len < y_len) ? y_len : x_len; max_len = (max_len < z_len) ? z_len : max_len; bbox = Iso_cuboid(bbox.min(), bbox.min() + max_len * Vector(1.0, 1.0, 1.0)); // Shift the squared box to make sure it's centered in the original place Point bbox_transformed_centroid = midpoint(bbox.min(), bbox.max()); Vector diff_centroid = bbox_centroid - bbox_transformed_centroid; bbox = bbox.transform(Aff_transformation_3(TRANSLATION, diff_centroid)); // save octree attributes m_bbox_min = bbox.min(); m_bbox_side = bbox.max()[0] - m_bbox_min[0]; for (InputIterator it = pwn.begin(); it != pwn.end(); it++) m_root.add_point(it); } ~Octree() { m_root.unsplit(); } // template < typename CellCriteria, typename NormalCriteria > // or other useful criterion void refine(size_t max_depth, size_t max_pts_num) { // Make sure arguments are valid if (max_depth < 0 || max_pts_num < 1) { CGAL_TRACE_STREAM << "wrong octree refinement criteria\n"; return; } for (int i = 0; i <= (int) max_depth; i++) m_side_per_depth.push_back(m_bbox_side / (FT) (1 << i)); refine_recurse(&m_root, max_depth, max_pts_num); for (int i = 0; i <= (int) m_max_depth_reached; i++) m_unit_per_depth.push_back(1 << (m_max_depth_reached - i)); } Node *root() { return &m_root; } const Node *root() const { return &m_root; } private: // functions : Point compute_barycenter_position(Node *node) const { // Determine the side length of this node FT size = m_side_per_depth[node->depth()]; // Determine the location this node should be split // TODO: I think Point_3 has a [] operator, so using an array here might not be necessary! FT bary[3]; for (int i = 0; i < 3; i++) bary[i] = node->location()[i] * size + (size / 2.0) + m_bbox_min[i]; // Convert that location into a point return {bary[0], bary[1], bary[2]}; } void refine_recurse(Node *node, size_t dist_to_max_depth, size_t max_pts_num) { // Check if the depth limit is reached, or if the node isn't filled if (dist_to_max_depth == 0 || node->num_points() <= max_pts_num) { // If this node is the deepest in the tree, record its depth if (m_max_depth_reached < node->depth()) m_max_depth_reached = node->depth(); // Don't split this node return; } // Create child nodes node->split(); // Distribute this nodes points among its children reassign_points(node); // Repeat this process for all children (recursive) for (int child_id = 0; child_id < 8; child_id++) { refine_recurse(node->child(child_id), dist_to_max_depth - 1, max_pts_num); } } void reassign_points(Node *node) { // Find the position of this node's split Point barycenter = compute_barycenter_position(node); // Check each point contained by this node for (const InputIterator &pwn_it : node->points()) { const Point &point = get(m_points_map, *pwn_it); // Determine which octant a point falls in // TODO: Could this use std::bitset? int is_right = barycenter[0] < point[0]; int is_up = barycenter[1] < point[1]; int is_front = barycenter[2] < point[2]; // Check if a point is very close to the edge bool equal_right = std::abs(barycenter[0] - point[0]) < 1e-6; bool equal_up = std::abs(barycenter[1] - point[1]) < 1e-6; bool equal_front = std::abs(barycenter[2] - point[2]) < 1e-6; // Generate a 3-bit code representing a point's octant int child_id = (is_front << 2) | (is_up << 1) | is_right; // Get the child node using that code, and add the point node->child(child_id)->add_point(pwn_it); // Edge cases get special treatment to prevent extremely deep trees if (equal_right) { int sym_child_id = (is_front << 2) | (is_up << 1) | (!is_right); node->child(sym_child_id)->add_point(pwn_it); } if (equal_up) { int sym_child_id = (is_front << 2) | (!is_up << 1) | is_right; node->child(sym_child_id)->add_point(pwn_it); } if (equal_front) { int sym_child_id = (!is_front << 2) | (is_up << 1) | (!is_right); node->child(sym_child_id)->add_point(pwn_it); } } } }; // end class Octree } // namespace CGAL #endif // CGAL_OCTREE_3_H