// Copyright (c) 2000 Utrecht University (The Netherlands), // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $Source$ // $Revision$ $Date$ // $Name$ // // Author(s) : Andreas Fabri #ifndef CGAL_CARTESIAN_TETRAHEDRON_3_H #define CGAL_CARTESIAN_TETRAHEDRON_3_H #include #include #include CGAL_BEGIN_NAMESPACE template class TetrahedronC3 { typedef typename R_::FT FT; typedef typename R_::Point_3 Point_3; typedef typename R_::Plane_3 Plane_3; typedef typename R_::Tetrahedron_3 Tetrahedron_3; typedef typename R_::Aff_transformation_3 Aff_transformation_3; typedef Fourtuple Rep; typedef typename R_::template Handle::type Base; Base base; public: typedef R_ R; TetrahedronC3() {} TetrahedronC3(const Point_3 &p, const Point_3 &q, const Point_3 &r, const Point_3 &s) : base(p, q, r, s) {} const Point_3 & vertex(int i) const; const Point_3 & operator[](int i) const; bool operator==(const TetrahedronC3 &t) const; bool operator!=(const TetrahedronC3 &t) const; Bbox_3 bbox() const; Tetrahedron_3 transform(const Aff_transformation_3 &t) const { return TetrahedronC3(t.transform(vertex(0)), t.transform(vertex(1)), t.transform(vertex(2)), t.transform(vertex(3))); } Orientation orientation() const; Oriented_side oriented_side(const Point_3 &p) const; Bounded_side bounded_side(const Point_3 &p) const; bool has_on_boundary(const Point_3 &p) const; bool has_on_positive_side(const Point_3 &p) const; bool has_on_negative_side(const Point_3 &p) const; bool has_on_bounded_side(const Point_3 &p) const; bool has_on_unbounded_side(const Point_3 &p) const; bool is_degenerate() const; FT volume() const; }; template < class R > bool TetrahedronC3:: operator==(const TetrahedronC3 &t) const { if (CGAL::identical(base, t.base)) return true; if (orientation() != t.orientation()) return false; std::vector< Point_3 > V1; std::vector< Point_3 > V2; typename std::vector< Point_3 >::iterator uniq_end1; typename std::vector< Point_3 >::iterator uniq_end2; int k; for ( k=0; k < 4; k++) V1.push_back( vertex(k)); for ( k=0; k < 4; k++) V2.push_back( t.vertex(k)); typename R::Less_xyz_3 Less_object = R().less_xyz_3_object(); std::sort(V1.begin(), V1.end(), Less_object); std::sort(V2.begin(), V2.end(), Less_object); uniq_end1 = std::unique( V1.begin(), V1.end()); uniq_end2 = std::unique( V2.begin(), V2.end()); V1.erase( uniq_end1, V1.end()); V2.erase( uniq_end2, V2.end()); return V1 == V2; } template < class R > inline bool TetrahedronC3:: operator!=(const TetrahedronC3 &t) const { return !(*this == t); } template < class R > const typename TetrahedronC3::Point_3 & TetrahedronC3:: vertex(int i) const { if (i<0) i=(i%4)+4; else if (i>3) i=i%4; switch (i) { case 0: return get(base).e0; case 1: return get(base).e1; case 2: return get(base).e2; default: return get(base).e3; } } template < class R > inline const typename TetrahedronC3::Point_3 & TetrahedronC3:: operator[](int i) const { return vertex(i); } template < class R > CGAL_KERNEL_MEDIUM_INLINE typename TetrahedronC3::FT TetrahedronC3::volume() const { return R().compute_volume_3_object()(*this); } template < class R > Orientation TetrahedronC3:: orientation() const { return R().orientation_3_object()(vertex(0), vertex(1), vertex(2), vertex(3)); } template < class R > Oriented_side TetrahedronC3:: oriented_side(const typename TetrahedronC3::Point_3 &p) const { Orientation o = orientation(); if (o != ZERO) return Oriented_side(o * bounded_side(p)); CGAL_kernel_assertion (!is_degenerate()); return ON_ORIENTED_BOUNDARY; } template < class R > Bounded_side TetrahedronC3:: bounded_side(const typename TetrahedronC3::Point_3 &p) const { return R().bounded_side_3_object() (static_cast(*this), p); } template < class R > inline bool TetrahedronC3::has_on_boundary (const typename TetrahedronC3::Point_3 &p) const { return oriented_side(p) == ON_ORIENTED_BOUNDARY; } template < class R > inline bool TetrahedronC3::has_on_positive_side (const typename TetrahedronC3::Point_3 &p) const { return oriented_side(p) == ON_POSITIVE_SIDE; } template < class R > inline bool TetrahedronC3::has_on_negative_side (const typename TetrahedronC3::Point_3 &p) const { return oriented_side(p) == ON_NEGATIVE_SIDE; } template < class R > inline bool TetrahedronC3::has_on_bounded_side (const typename TetrahedronC3::Point_3 &p) const { return bounded_side(p) == ON_BOUNDED_SIDE; } template < class R > inline bool TetrahedronC3::has_on_unbounded_side (const typename TetrahedronC3::Point_3 &p) const { return bounded_side(p) == ON_UNBOUNDED_SIDE; } template < class R > inline bool TetrahedronC3::is_degenerate() const { return orientation() == COPLANAR; } template < class R > inline Bbox_3 TetrahedronC3::bbox() const { typename R::Construct_bbox_3 construct_bbox_3; return construct_bbox_3(vertex(0)) + construct_bbox_3(vertex(1)) + construct_bbox_3(vertex(2)) + construct_bbox_3(vertex(3)); } #ifndef CGAL_NO_OSTREAM_INSERT_TETRAHEDRONC3 template < class R > std::ostream & operator<<(std::ostream &os, const TetrahedronC3 &t) { switch(os.iword(IO::mode)) { case IO::ASCII : return os << t[0] << ' ' << t[1] << ' ' << t[2] << ' ' << t[3]; case IO::BINARY : return os << t[0] << t[1] << t[2] << t[3]; default: os << "TetrahedronC3(" << t[0] << ", " << t[1] << ", " << t[2]; os << ", " << t[3] << ")"; return os; } } #endif // CGAL_NO_OSTREAM_INSERT_TETRAHEDRONC3 #ifndef CGAL_NO_ISTREAM_EXTRACT_TETRAHEDRONC3 template < class R > std::istream & operator>>(std::istream &is, TetrahedronC3 &t) { typename R::Point_3 p, q, r, s; is >> p >> q >> r >> s; if (is) t = TetrahedronC3(p, q, r, s); return is; } #endif // CGAL_NO_ISTREAM_EXTRACT_TETRAHEDRONC3 CGAL_END_NAMESPACE #endif // CGAL_CARTESIAN_TETRAHEDRON_3_H