// Copyright (c) 2000 Utrecht University (The Netherlands), // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $Source$ // $Revision$ $Date$ // $Name$ // // Author : Andreas Fabri #ifndef CGAL_CARTESIAN_VECTOR_3_H #define CGAL_CARTESIAN_VECTOR_3_H #include #include CGAL_BEGIN_NAMESPACE template < class R_ > class VectorC3 { typedef typename R_::FT FT; typedef typename R_::Point_3 Point_3; typedef typename R_::Vector_3 Vector_3; typedef typename R_::Ray_3 Ray_3; typedef typename R_::Segment_3 Segment_3; typedef typename R_::Line_3 Line_3; typedef typename R_::Direction_3 Direction_3; typedef typename R_::Aff_transformation_3 Aff_transformation_3; typedef Threetuple Rep; typedef typename R_::template Handle::type Base; Base base; public: typedef R_ R; VectorC3() {} VectorC3(const Null_vector &n) { *this = R().construct_vector_3_object()(n); } VectorC3(const Point_3 &a, const Point_3 &b) { *this = R().construct_vector_3_object()(a, b); } VectorC3(const Segment_3 &s) { *this = R().construct_vector_3_object()(s); } VectorC3(const Ray_3 &r) { *this = R().construct_vector_3_object()(r); } VectorC3(const Line_3 &l) { *this = R().construct_vector_3_object()(l); } VectorC3(const FT &x, const FT &y, const FT &z) : base(x, y, z) {} VectorC3(const FT &x, const FT &y, const FT &z, const FT &w) { if (w != FT(1)) base = Rep(x/w, y/w, z/w); else base = Rep(x, y, z); } const FT & x() const { return get(base).e0; } const FT & y() const { return get(base).e1; } const FT & z() const { return get(base).e2; } const FT & hx() const { return x(); } const FT & hy() const { return y(); } const FT & hz() const { return z(); } FT hw() const { return FT(1); } const FT & cartesian(int i) const; const FT & operator[](int i) const; FT homogeneous(int i) const; int dimension() const { return 3; } Vector_3 operator+(const VectorC3 &w) const; Vector_3 operator-(const VectorC3 &w) const; Vector_3 operator-() const; Vector_3 operator/(const FT &c) const; FT squared_length() const; Direction_3 direction() const; Vector_3 transform(const Aff_transformation_3 &t) const { return t.transform(*this); } }; template < class R > inline bool operator==(const VectorC3 &v, const VectorC3 &w) { return w.x() == v.x() && w.y() == v.y() && w.z() == v.z(); } template < class R > inline bool operator!=(const VectorC3 &v, const VectorC3 &w) { return !(v == w); } template < class R > inline bool operator==(const VectorC3 &v, const Null_vector &) { return CGAL_NTS is_zero(v.x()) && CGAL_NTS is_zero(v.y()) && CGAL_NTS is_zero(v.z()); } template < class R > inline bool operator==(const Null_vector &n, const VectorC3 &v) { return v == n; } template < class R > inline bool operator!=(const VectorC3 &v, const Null_vector &n) { return !(v == n); } template < class R > inline bool operator!=(const Null_vector &n, const VectorC3 &v) { return !(v == n); } template < class R > inline const typename VectorC3::FT & VectorC3::cartesian(int i) const { CGAL_kernel_precondition( (i>=0) && (i<3) ); if (i==0) return x(); if (i==1) return y(); return z(); } template < class R > inline const typename VectorC3::FT & VectorC3::operator[](int i) const { return cartesian(i); } template < class R > typename VectorC3::FT VectorC3::homogeneous(int i) const { if (i==3) return FT(1); return cartesian(i); } template < class R > inline typename VectorC3::Vector_3 VectorC3:: operator+(const VectorC3 &w) const { return VectorC3(x() + w.x(), y() + w.y(), z() + w.z()); } template < class R > inline typename VectorC3::Vector_3 VectorC3::operator-(const VectorC3 &w) const { return VectorC3(x() - w.x(), y() - w.y(), z() - w.z()); } template < class R > inline typename VectorC3::Vector_3 VectorC3::operator-() const { return R().construct_opposite_vector_3_object()(*this); } template < class R > inline typename VectorC3::FT VectorC3::squared_length() const { return CGAL_NTS square(x()) + CGAL_NTS square(y()) + CGAL_NTS square(z()); } template < class R > inline typename VectorC3::Vector_3 VectorC3:: operator/(const typename VectorC3::FT &c) const { return VectorC3(x()/c, y()/c, z()/c); } template < class R > inline typename VectorC3::Direction_3 VectorC3::direction() const { return Direction_3(*this); } #ifndef CGAL_CARTESIAN_NO_OSTREAM_INSERT_VECTORC3 template < class R > std::ostream & operator<<(std::ostream &os, const VectorC3 &v) { switch(os.iword(IO::mode)) { case IO::ASCII : return os << v.x() << ' ' << v.y() << ' ' << v.z(); case IO::BINARY : write(os, v.x()); write(os, v.y()); write(os, v.z()); return os; default: os << "VectorC3(" << v.x() << ", " << v.y() << ", " << v.z() << ")"; return os; } } #endif // CGAL_CARTESIAN_NO_OSTREAM_INSERT_VECTORC3 #ifndef CGAL_CARTESIAN_NO_ISTREAM_EXTRACT_VECTORC3 template < class R > std::istream & operator>>(std::istream &is, VectorC3 &p) { typename R::FT x, y, z; switch(is.iword(IO::mode)) { case IO::ASCII : is >> x >> y >> z; break; case IO::BINARY : read(is, x); read(is, y); read(is, z); break; default: std::cerr << "" << std::endl; std::cerr << "Stream must be in ascii or binary mode" << std::endl; break; } if (is) p = VectorC3(x, y, z); return is; } #endif // CGAL_CARTESIAN_NO_ISTREAM_EXTRACT_VECTORC3 CGAL_END_NAMESPACE #endif // CGAL_CARTESIAN_VECTOR_3_H