// Copyright (c) 2003 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Julia Floetotto #ifndef CGAL_VORONOI_INTERSECTION_2_TRAITS_3_H #define CGAL_VORONOI_INTERSECTION_2_TRAITS_3_H #include #include #include #include #include #include #include #include #include namespace CGAL { template class Orientation_with_normal_plane_2_3 { public: typedef typename Traits::Point_3 Point; typedef typename Traits::Vector_3 Vector; Orientation_with_normal_plane_2_3(const Vector& _normal, const Traits& _traits) : normal(_normal), traits(_traits) {} Orientation operator()(const Point &p, const Point &q, const Point &r) const { return traits.orientation_3_object()(p,q,q+normal,r); } private: Vector normal; const Traits& traits; }; template < typename K > class Side_of_plane_centered_sphere_2_3 { public: typedef Oriented_side result_type; typedef typename K::Point_3 Point; typedef typename K::Vector_3 Vector; typedef typename K::Plane_3 Plane; typedef typename K::Direction_3 Direction; Side_of_plane_centered_sphere_2_3(const Point& _p, const Vector& _normal) : a(_p), normal(_normal) {} Oriented_side operator()(const Point &p, const Point &q, const Point &r, const Point &t) const { return side_of_plane_centered_sphere(a,normal,p,q,r,t); } Oriented_side operator()(const Point &p, const Point &q, const Point &r) const { return side_of_plane_centered_sphere(a,normal,p,q,r); } Oriented_side operator() (const Point &p, const Point &q) const { return side_of_plane_centered_sphere(a,normal,p,q); } private: Point a; Vector normal; }; template < typename K > class Construct_plane_centered_circumcenter_3 { public: typedef typename K::Point_3 Point; typedef typename K::Vector_3 Vector; Construct_plane_centered_circumcenter_3(const Point& _p, const Vector& _normal) : a(_p), normal(_normal) {} Point operator()(const Point &p, const Point &q, const Point &r) const { return plane_centered_circumcenter_3(a,normal,p,q,r); } private: Point a; Vector normal; }; template < typename K > class Construct_plane_intersected_bisector_3 { public: typedef typename K::Point_3 Point; typedef typename K::Vector_3 Vector; typedef typename K::Line_3 Line; Construct_plane_intersected_bisector_3(const Point& _a, const Vector& _normal) : a(_a), normal(_normal) {} Line operator() (const Point &p, const Point &q) const { return plane_intersected_bisector_3(a, normal, p, q); } private: Point a; Vector normal; }; template < typename K > class Compare_first_projection_3 { //compares the projection of two points onto a second (non-trivial) // vector in the projection plane: public: typedef typename K::Point_3 Point; typedef typename K::Vector_3 Vector; typedef typename K::FT Coord_type; Compare_first_projection_3(const Vector& _normal) : normal(_normal) {} Comparison_result operator() (const Point &p, const Point &q) const { if(normal.x()!=Coord_type(0)) return (Comparison_result) CGAL_NTS sign(Vector(normal.y(),-normal.x(),Coord_type(0))*(p-q)); if(normal.y()!= Coord_type(0)) return (Comparison_result) CGAL_NTS sign(Vector(-normal.y(),normal.x(),Coord_type(0))*(p-q)); CGAL_assertion(normal.z()!= Coord_type(0)); return (Comparison_result) CGAL_NTS sign(Vector(-normal.z(),Coord_type(0),normal.x())*(p-q)); } private: Vector normal; }; template < typename K > class Compare_second_projection_3 { //compares the projection of two points onto a second (non-trivial) // vector in the projection plane: public: typedef typename K::FT Coord_type; typedef typename K::Vector_3 Vector; typedef typename K::Point_3 Point; Compare_second_projection_3(const Vector& _normal) : normal(_normal) {} Comparison_result operator()(const Point &p, const Point &q) const { if(normal.x()!=Coord_type(0)) return (Comparison_result) CGAL_NTS sign(Vector(normal.z(),Coord_type(0),-normal.x())*(p-q)); if(normal.y()!= Coord_type(0)) return (Comparison_result) CGAL_NTS sign(Vector(Coord_type(0),normal.z(),-normal.y())*(p-q)); CGAL_assertion(normal.z()!= Coord_type(0)); return (Comparison_result) CGAL_NTS sign(Vector(Coord_type(0),-normal.z(),normal.y())*(p-q)); } private: Vector normal; }; namespace Interpolation { template < typename K > class Compute_area_3 { //squareroot of compute_squared_area_3: //-> if no sqrt is supported, cast to double public: typedef typename K::FT FT; typedef typename K::Point_3 Point; typedef typename K::Compute_squared_area_3 Compute_squared_area_3; FT operator()(const Point& p, const Point& q, const Point& r) const { typedef typename CGAL::Algebraic_structure_traits AST; FT squared_area = Compute_squared_area_3()(p,q,r); return cast_sqrt_to_double(squared_area, typename AST::Algebraic_category() ); } private: FT cast_sqrt_to_double(const FT& squared_area, Field_with_sqrt_tag) const { return CGAL_NTS sqrt(squared_area); } FT cast_sqrt_to_double(const FT& squared_area, Integral_domain_without_division_tag) const { double approx = CGAL_NTS to_double(squared_area); return CGAL_NTS sqrt(approx); } }; } // namespace Interpolation template < class K > class Voronoi_intersection_2_traits_3 { public: typedef K Rep; typedef typename Rep::RT Weight; typedef typename Rep::FT FT; //other types needed: typedef typename Rep::Point_3 Point_2; typedef typename Rep::Segment_3 Segment_2; typedef typename Rep::Triangle_3 Triangle_2; typedef typename Rep::Line_3 Line_2; typedef typename Rep::Ray_3 Ray_2; typedef typename Rep::Vector_3 Vector_2; typedef typename Rep::Construct_ray_3 Construct_ray_2; typedef typename Rep::Construct_segment_3 Construct_segment_2; typedef typename Rep::Construct_triangle_3 Construct_triangle_2; typedef typename Rep::Compare_distance_3 Compare_distance_2; //if no sqrt is supported, it casts to double: typedef Interpolation::Compute_area_3 Compute_area_2; //the regular triangulation traits model: //Traits::Point_2 is a 3D point!! typedef Point_2 Weighted_point_2; typedef Point_2 Bare_point; //specific tests: typedef Orientation_with_normal_plane_2_3 Orientation_2; typedef Side_of_plane_centered_sphere_2_3 Power_test_2; typedef Construct_plane_centered_circumcenter_3 Construct_weighted_circumcenter_2; typedef Construct_plane_intersected_bisector_3 Construct_radical_axis_2; typedef Compare_first_projection_3 Compare_x_2; typedef Compare_second_projection_3 Compare_y_2; typedef Compare_to_less Less_x_2; typedef Compare_to_less Less_y_2; //for certificated coordinate/neighbor computation: typedef typename Rep::Less_distance_to_point_3 Less_distance_to_point_2; typedef typename Rep::Compute_squared_distance_3 Compute_squared_distance_2; //instantiations and creation of functors: //for the triangulation: Orientation_2 orientation_2_object() const { return Orientation_2(normal, Rep()); } Power_test_2 power_test_2_object() const { return Power_test_2(a,normal); } Compare_distance_2 compare_distance_2_object() const { return Compare_distance_2(); } Compare_x_2 compare_x_2_object() const { return Compare_x_2(normal); } Compare_y_2 compare_y_2_object() const { return Compare_y_2(normal); } Less_x_2 less_x_2_object() const { return compare_to_less(compare_x_2_object());; } Less_y_2 less_y_2_object() const { return compare_to_less(compare_y_2_object());; } //for the coordinate computation: Compute_area_2 compute_area_2_object() const { return Compute_area_2(); } //for constructions of dual: Construct_weighted_circumcenter_2 construct_weighted_circumcenter_2_object() const { return Construct_weighted_circumcenter_2(a,normal); } Construct_radical_axis_2 construct_radical_axis_2_object() const { return Construct_radical_axis_2(a,normal); } Construct_ray_2 construct_ray_2_object() const { return Construct_ray_2(); } Construct_segment_2 construct_segment_2_object() const { return Construct_segment_2(); } Construct_triangle_2 construct_triangle_2_object() const { return Construct_triangle_2(); } //for certification of coordinate/neighbor computation: Less_distance_to_point_2 less_distance_to_point_2_object() const { return Less_distance_to_point_2(); } Compute_squared_distance_2 compute_squared_distance_2_object() const { return Compute_squared_distance_2(); } Voronoi_intersection_2_traits_3(const Point_2& _p = Point_2(), const Vector_2& _normal = NULL_VECTOR) : a(_p), normal(_normal) {} const Vector_2& get_normal() const { return normal; } const Point_2& get_point() const { return a; } private: //defining the intersection plane: Point_2 a; Vector_2 normal; }; //put the homogeneous or cartesian tag template < class Point, class Vector > inline Oriented_side side_of_plane_centered_sphere(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, const Point &r, const Point &t) { typedef typename Point::R::Rep_tag Tag; return side_of_plane_centered_sphere(a,n,p,q,r,t, Tag()); } template < class Point, class Vector > inline Oriented_side side_of_plane_centered_sphere(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, const Point &r) { typedef typename Point::R::Rep_tag Tag; return side_of_plane_centered_sphere(a,n,p,q,r,Tag()); } template < class Point, class Vector > inline Oriented_side side_of_plane_centered_sphere(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q) { typedef typename Point::R::RT RT; Comparison_result r = Compare()(-CGAL_NTS square(Vector(a,p)*n), -CGAL_NTS square(Vector(a,q)*n)); if(r == LARGER) return ON_NEGATIVE_SIDE; else if (r == SMALLER) return ON_POSITIVE_SIDE; return ON_ORIENTED_BOUNDARY; } template < class Point, class Vector > inline Point plane_centered_circumcenter_3(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, const Point &r) { typedef typename Point::R::Rep_tag Tag; return plane_centered_circumcenter_3(a,n,p,q,r, Tag()); } template < class Point, class Vector > inline typename Point::R::Line_3 plane_intersected_bisector_3(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q) { typedef typename Point::R::Rep_tag Tag; return plane_intersected_bisector_3(a,n,p,q, Tag()); } ///----------------------------------------------------------- // Cartesian variants: // template < class Point, class Vector> inline Oriented_side side_of_plane_centered_sphere(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, const Point &r, const Point &t, Cartesian_tag) { return side_of_plane_centered_sphereC3(a.x(), a.y(), a.z(), n.x(), n.y(), n.z(), p.x(), p.y(), p.z(), q.x(), q.y(), q.z(), r.x(), r.y(), r.z(), t.x(), t.y(), t.z()); } template < class Point, class Vector > inline Oriented_side side_of_plane_centered_sphere(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, const Point &r, Cartesian_tag) { return side_of_plane_centered_sphereC3(a.x(), a.y(), a.z(), n.x(), n.y(), n.z(), p.x(), p.y(), p.z(), q.x(), q.y(), q.z(), r.x(), r.y(), r.z()); } template < class Point, class Vector > inline Point plane_centered_circumcenter_3(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, const Point &r, Cartesian_tag) { typename Point::R::RT x,y,z; plane_centered_circumcenterC3(a.x(), a.y(), a.z(), n.x(), n.y(), n.z(), p.x(), p.y(), p.z(), q.x(), q.y(), q.z(), r.x(), r.y(), r.z(),x,y,z); return Point(x,y,z); } template < class Point, class Vector> inline typename Point::R::Line_3 plane_intersected_bisector_3(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, Cartesian_tag) { typename Point::R::RT x1,y1,z1, x2,y2,z2; typedef typename Point::R::Line_3 Line; bisector_plane_intersectionC3(a.x(), a.y(), a.z(), n.x(), n.y(), n.z(), p.x(), p.y(), p.z(), q.x(), q.y(), q.z(), x1,y1,z1,x2,y2,z2); return Line(Point(x1,y1,z1), Point(x2,y2,z2)); } // Homogeneous variants. // The 3 following call the cartesian version over FT, because an // homogeneous special version has not yet been written. template inline Oriented_side side_of_plane_centered_sphere(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, const Point &r, const Point &t, Homogeneous_tag) { return side_of_plane_centered_sphereC3(a.x(), a.y(), a.z(), n.x(), n.y(), n.z(), p.x(), p.y(), p.z(), q.x(), q.y(), q.z(), r.x(), r.y(), r.z(), t.x(), t.y(), t.z()); } template < class Point, class Vector > inline Oriented_side side_of_plane_centered_sphere(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, const Point &r, Homogeneous_tag) { return side_of_plane_centered_sphereC3(a.x(), a.y(), a.z(), n.x(), n.y(), n.z(), p.x(), p.y(), p.z(), q.x(), q.y(), q.z(), r.x(), r.y(), r.z()); } template < class Point, class Vector > inline Point plane_centered_circumcenter_3(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, const Point &r, Homogeneous_tag) { typename Point::R::RT x,y,z; plane_centered_circumcenterC3(a.x(), a.y(), a.z(), n.x(), n.y(), n.z(), p.x(), p.y(), p.z(), q.x(), q.y(), q.z(), r.x(), r.y(), r.z(),x,y,z); return Point(x,y,z); } template < class Point, class Vector > inline typename Point::R::Line_3 plane_intersected_bisector_3(const Point &a, const Vector& n, /*defines the plane*/ const Point &p, const Point &q, Homogeneous_tag) { typename Point::R::RT x1,y1,z1, x2,y2,z2; typedef typename Point::R::Line_3 Line; bisector_plane_intersectionC3(a.x(), a.y(), a.z(), n.x(), n.y(), n.z(), p.x(), p.y(), p.z(), q.x(), q.y(), q.z(),x1,y1,z1,x2,y2,z2); return Line(Point(x1,y1,z1), Point(x2,y2,z2)); } } //namespace CGAL #endif // CGAL_VORONOI_INTERSECTION_2_TRAITS_3_H