// ====================================================================== // // Copyright (c) 2000 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------- // // release : // release_date : // // file : include/CGAL/Cartesian/Rotation_rep_2.h // revision : $Revision$ // revision_date : $Date$ // author(s) : Andreas Fabri, Herve Bronnimann // coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr) // // ====================================================================== #ifndef CGAL_CARTESIAN_ROTATION_REP_2_H #define CGAL_CARTESIAN_ROTATION_REP_2_H #include CGAL_BEGIN_NAMESPACE template < class R > class Rotation_repC2: public Aff_transformation_rep_baseC2 { friend class Aff_transformation_repC2; friend class Translation_repC2; friend class Scaling_repC2; public: typedef Aff_transformation_rep_baseC2 Aff_t_base; typedef typename Aff_t_base::FT FT; typedef typename Aff_t_base::RT RT; typedef typename Aff_t_base::Point_2 Point_2; typedef typename Aff_t_base::Vector_2 Vector_2; typedef typename Aff_t_base::Direction_2 Direction_2; typedef typename Aff_t_base::Aff_transformation_2 Aff_transformation_2; typedef Aff_transformation_repC2 Transformation; typedef Translation_repC2 Translation; typedef Rotation_repC2 Rotation; typedef Scaling_repC2 Scaling; Rotation_repC2() {} Rotation_repC2(const FT &sinus, const FT &cosinus) : _sinus(sinus), _cosinus(cosinus) {} Rotation_repC2(const Direction_2 &d, const FT &eps_num, const FT &eps_den = FT(1)) { FT sin_num; FT cos_num; FT denom; rational_rotation_approximation(d.to_vector().x(), d.to_vector().y(), sin_num, cos_num, denom, eps_num, eps_den); _sinus = sin_num/denom; _cosinus = cos_num/denom; } Point_2 transform(const Point_2 &p) const { return Point_2(_cosinus * p.x() - _sinus * p.y(), _sinus * p.x() + _cosinus * p.y()); } Vector_2 transform(const Vector_2 &v) const { return Vector_2(_cosinus * v.x() - _sinus * v.y(), _sinus * v.x() + _cosinus * v.y()); } Direction_2 transform(const Direction_2 &d) const { Vector_2 v = d.to_vector(); return Direction_2(_cosinus * v.x() - _sinus * v.y(), _sinus * v.x() + _cosinus * v.y()); } Aff_transformation_2 inverse() const { return Aff_transformation_2(ROTATION, - _sinus, _cosinus, FT(1)); } Aff_transformation_2 operator*(const Aff_t_base &t) const { return t.compose(*this); } Aff_transformation_2 compose(const Translation &t) const { return Aff_transformation_2(_cosinus, -_sinus, t._translationvector.x(), _sinus, _cosinus, t._translationvector.y()); } Aff_transformation_2 compose(const Rotation &t) const { return Aff_transformation_2(ROTATION, t._sinus*_cosinus + t._cosinus*_sinus, t._cosinus*_cosinus-t._sinus*_sinus ); } Aff_transformation_2 compose(const Scaling &t) const { return Aff_transformation_2(t._scalefactor*_cosinus, t._scalefactor*-_sinus, t._scalefactor*_sinus, t._scalefactor*_cosinus); } Aff_transformation_2 compose(const Transformation &t) const { return Aff_transformation_2(_cosinus*t.t11 + _sinus*t.t12, -_sinus*t.t11 + _cosinus*t.t12, t.t13, _cosinus*t.t21 + _sinus*t.t22, -_sinus*t.t21 + _cosinus*t.t22, t.t23); } bool is_even() const { return true; } FT cartesian(int i, int j) const { switch (i) { case 0: switch (j) { case 0: return _cosinus; case 1: return -_sinus; case 2: return FT(0); } case 1: switch (j) { case 0: return _sinus; case 1: return _cosinus; case 2: return FT(0); } case 2: switch (j) { case 0: return FT(0); case 1: return FT(0); case 2: return FT(1); } } return FT(0); } std::ostream &print(std::ostream &os) const { os << "Aff_transformationC2(" << _sinus << ", " << _cosinus << ")"; return os; } private: FT _sinus; FT _cosinus; }; CGAL_END_NAMESPACE #endif // CGAL_CARTESIAN_ROTATION_REP_2_H