// ====================================================================== // // Copyright (c) 2000 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------- // // release : // release_date : // // file : include/CGAL/Cartesian/Triangle_2.C // revision : $Revision$ // revision_date : $Date$ // author(s) : Andreas Fabri, Herve Bronnimann // coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr) // // ====================================================================== #ifndef CGAL_CARTESIAN_TRIANGLE_2_C #define CGAL_CARTESIAN_TRIANGLE_2_C #include #ifndef CGAL_CARTESIAN_REDEFINE_NAMES_2_H #define CGAL_CTAG #endif #ifdef CGAL_CFG_TYPENAME_BUG #define typename #endif CGAL_BEGIN_NAMESPACE template < class R > CGAL_KERNEL_CTOR_INLINE TriangleC2::TriangleC2() { new ( static_cast< void*>(ptr)) Threetuple(); } template < class R > CGAL_KERNEL_CTOR_INLINE TriangleC2::TriangleC2(const TriangleC2 &t) : Handle_for >(t) {} template < class R > CGAL_KERNEL_CTOR_INLINE TriangleC2:: TriangleC2(const typename TriangleC2::Point_2 &p, const typename TriangleC2::Point_2 &q, const typename TriangleC2::Point_2 &r) { new ( static_cast< void*>(ptr)) Threetuple(p, q, r); } template < class R > inline TriangleC2::~TriangleC2() {} template < class R > CGAL_KERNEL_MEDIUM_INLINE bool TriangleC2::operator==(const TriangleC2 &t) const { if ( ptr == t.ptr ) return true; int i; for(i=0; i<3; i++) if ( vertex(0) == t.vertex(i) ) break; return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2); } template < class R > inline bool TriangleC2::operator!=(const TriangleC2 &t) const { return !(*this == t); } template < class R > CGAL_KERNEL_MEDIUM_INLINE typename TriangleC2::Point_2 TriangleC2::vertex(int i) const { if (i>2) i = i%3; else if (i<0) i = (i%3) + 3; return (i==0) ? ptr->e0 : (i==1) ? ptr->e1 : ptr->e2; } template < class R > inline typename TriangleC2::Point_2 TriangleC2::operator[](int i) const { return vertex(i); } template < class R > inline Orientation TriangleC2::orientation() const { return CGAL::orientation(vertex(0), vertex(1), vertex(2)); } template < class R > CGAL_KERNEL_LARGE_INLINE Bounded_side TriangleC2:: bounded_side(const typename TriangleC2::Point_2 &p) const { Orientation o1 = CGAL::orientation(vertex(0), vertex(1), p), o2 = CGAL::orientation(vertex(1), vertex(2), p), o3 = CGAL::orientation(vertex(2), vertex(3), p); if (o2 == o1 && o3 == o1) return ON_BOUNDED_SIDE; return (o1 == COLLINEAR && collinear_are_ordered_along_line(vertex(0), p, vertex(1))) || (o2 == COLLINEAR && collinear_are_ordered_along_line(vertex(1), p, vertex(2))) || (o3 == COLLINEAR && collinear_are_ordered_along_line(vertex(2), p, vertex(3))) ? ON_BOUNDARY : ON_UNBOUNDED_SIDE; } template < class R > CGAL_KERNEL_LARGE_INLINE Oriented_side TriangleC2:: oriented_side(const typename TriangleC2::Point_2 &p) const { // depends on the orientation of the vertices Orientation o1 = CGAL::orientation(vertex(0), vertex(1), p), o2 = CGAL::orientation(vertex(1), vertex(2), p), o3 = CGAL::orientation(vertex(2), vertex(3), p), ot = CGAL::orientation(vertex(0), vertex(1), vertex(2)); if (o1 == ot && o2 == ot && o3 == ot) // ot cannot be COLLINEAR return Oriented_side(ot); return (o1 == COLLINEAR && collinear_are_ordered_along_line(vertex(0), p, vertex(1))) || (o2 == COLLINEAR && collinear_are_ordered_along_line(vertex(1), p, vertex(2))) || (o3 == COLLINEAR && collinear_are_ordered_along_line(vertex(2), p, vertex(3))) ? ON_ORIENTED_BOUNDARY : Oriented_side(-ot); } template < class R > CGAL_KERNEL_LARGE_INLINE bool TriangleC2:: has_on_bounded_side(const typename TriangleC2::Point_2 &p) const { return bounded_side(p) == ON_BOUNDED_SIDE; } template < class R > CGAL_KERNEL_LARGE_INLINE bool TriangleC2:: has_on_unbounded_side(const typename TriangleC2::Point_2 &p) const { return bounded_side(p) == ON_UNBOUNDED_SIDE; } template < class R > inline bool TriangleC2:: has_on_boundary(const typename TriangleC2::Point_2 &p) const { return bounded_side(p) == ON_BOUNDARY; } template < class R > inline bool TriangleC2:: has_on_negative_side(const typename TriangleC2::Point_2 &p) const { return oriented_side(p) == ON_NEGATIVE_SIDE; } template < class R > inline bool TriangleC2:: has_on_positive_side(const typename TriangleC2::Point_2 &p) const { return oriented_side(p) == ON_POSITIVE_SIDE; } template < class R > inline bool TriangleC2::is_degenerate() const { return collinear(vertex(0), vertex(1), vertex(2)); } template < class R > inline Bbox_2 TriangleC2::bbox() const { return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox(); } template < class R > inline TriangleC2 TriangleC2:: transform(const typename TriangleC2::Aff_transformation_2 &t) const { return TriangleC2(t.transform(vertex(0)), t.transform(vertex(1)), t.transform(vertex(2))); } template < class R > inline TriangleC2 TriangleC2:: opposite() const { return TriangleC2(vertex(0), vertex(2), vertex(1)); } #ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLEC2 template < class R > std::ostream & operator<<(std::ostream &os, const TriangleC2 &t) { switch(os.iword(IO::mode)) { case IO::ASCII : return os << t[0] << ' ' << t[1] << ' ' << t[2]; case IO::BINARY : return os << t[0] << t[1] << t[2]; default: return os<< "TriangleC2(" << t[0] << ", " << t[1] << ", " << t[2] <<")"; } } #endif // CGAL_NO_OSTREAM_INSERT_TRIANGLEC2 #ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2 template < class R > std::istream & operator>>(std::istream &is, TriangleC2 &t) { TriangleC2::Point_2 p, q, r; is >> p >> q >> r; t = TriangleC2(p, q, r); return is; } #endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2 CGAL_END_NAMESPACE #ifdef CGAL_CFG_TYPENAME_BUG #undef typename #endif #endif // CGAL_CARTESIAN_TRIANGLE_2_C