// ====================================================================== // // Copyright (c) 2000 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------- // // release : // release_date : // // file : include/CGAL/Cartesian/Iso_cuboid_3.C // revision : $Revision$ // revision_date : $Date$ // author(s) : Hervé Brönnimann // coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr) // // ====================================================================== #ifndef CGAL_CARTESIAN_ISO_CUBOID_3_C #define CGAL_CARTESIAN_ISO_CUBOID_3_C #include #include #ifndef CGAL_CARTESIAN_REDEFINE_NAMES_3_H #define CGAL_CTAG #endif #ifdef CGAL_CFG_TYPENAME_BUG #define typename #endif CGAL_BEGIN_NAMESPACE template < class R > CGAL_KERNEL_CTOR_INLINE Iso_cuboidC3::Iso_cuboidC3() { new ( static_cast< void*>(ptr)) Twotuple< Point_3 >(); } template < class R > CGAL_KERNEL_CTOR_INLINE Iso_cuboidC3::Iso_cuboidC3(const Iso_cuboidC3& r) : Handle_for >(r) {} template < class R > CGAL_KERNEL_CTOR_LARGE_INLINE Iso_cuboidC3:: Iso_cuboidC3(const Iso_cuboidC3::Point_3& p, const Iso_cuboidC3::Point_3& q) { FT minx, maxx, miny, maxy, minz, maxz; if (p.x() < q.x()) { minx = p.x(); maxx = q.x(); } else { minx = q.x(); maxx = p.x(); } if (p.y() < q.y()) { miny = p.y(); maxy = q.y(); } else { miny = q.y(); maxy = p.y(); } if (p.z() < q.z()) { minz = p.z(); maxz = q.z(); } else { minz = q.z(); maxz = p.z(); } new (static_cast< void*>(ptr)) Twotuple(Point_3(minx, miny, minz), Point_3(maxx, maxy, maxz)); } template < class R > inline Iso_cuboidC3::~Iso_cuboidC3() {} template < class R > CGAL_KERNEL_INLINE bool Iso_cuboidC3::operator==(const Iso_cuboidC3& r) const { return min() == r.min() && max() == r.max(); } template < class R > inline bool Iso_cuboidC3::operator!=(const Iso_cuboidC3& r) const { return !(*this == r); } template < class R > inline Iso_cuboidC3::Point_3 Iso_cuboidC3::min() const { return ptr->e0; } template < class R > inline Iso_cuboidC3::Point_3 Iso_cuboidC3::max() const { return ptr->e1; } template < class R > inline Iso_cuboidC3::FT Iso_cuboidC3::xmin() const { return min().x(); } template < class R > inline Iso_cuboidC3::FT Iso_cuboidC3::ymin() const { return min().y(); } template < class R > inline Iso_cuboidC3::FT Iso_cuboidC3::zmin() const { return min().z(); } template < class R > inline Iso_cuboidC3::FT Iso_cuboidC3::xmax() const { return max().x(); } template < class R > inline Iso_cuboidC3::FT Iso_cuboidC3::ymax() const { return max().y(); } template < class R > inline Iso_cuboidC3::FT Iso_cuboidC3::zmax() const { return max().z(); } template < class R > CGAL_KERNEL_LARGE_INLINE Iso_cuboidC3::Point_3 Iso_cuboidC3::vertex(int i) const { switch (i%8) { case 0: return min(); case 1: return Point_3(max().hx(), min().hy(), min().hz()); case 2: return Point_3(max().hx(), max().hy(), min().hz()); case 3: return Point_3(min().hx(), max().hy(), min().hz()); case 4: return Point_3(min().hx(), max().hy(), max().hz()); case 5: return Point_3(min().hx(), min().hy(), max().hz()); case 6: return Point_3(max().hx(), min().hy(), max().hz()); case 7: return max(); } return Point_3(); } template < class R > inline Iso_cuboidC3::Point_3 Iso_cuboidC3::operator[](int i) const { return vertex(i); } template < class R > CGAL_KERNEL_MEDIUM_INLINE Bounded_side Iso_cuboidC3:: bounded_side(const Iso_cuboidC3::Point_3& p) const { if (strict_dominance(p,min()) && strict_dominance(max(),p) ) return ON_BOUNDED_SIDE; if (dominance(p,min()) && dominance(max(),p)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } template < class R > inline bool Iso_cuboidC3:: has_on_boundary(const Iso_cuboidC3::Point_3& p) const { return bounded_side(p) == ON_BOUNDARY; } template < class R > inline bool Iso_cuboidC3:: has_on(const Iso_cuboidC3::Point_3& p) const { return bounded_side(p) == ON_BOUNDARY; } template < class R > inline bool Iso_cuboidC3:: has_on_bounded_side(const Iso_cuboidC3::Point_3& p) const { return bounded_side(p) == ON_BOUNDED_SIDE; } template < class R > CGAL_KERNEL_INLINE bool Iso_cuboidC3:: has_on_unbounded_side(const Iso_cuboidC3::Point_3& p) const { return bounded_side(p) == ON_UNBOUNDED_SIDE; } template < class R > CGAL_KERNEL_INLINE bool Iso_cuboidC3::is_degenerate() const { return min().hx() == max().hx() || min().hy() == max().hy() || min().hz() == max().hz(); } template < class R > inline Bbox_3 Iso_cuboidC3::bbox() const { return min().bbox() + max().bbox(); } template < class R > CGAL_KERNEL_INLINE Iso_cuboidC3 Iso_cuboidC3:: transform(const Iso_cuboidC3::Aff_transformation_3&t) const { return Self(t.transform(min()), t.transform(max()) ); } #ifndef NO_OSTREAM_INSERT_ISO_CUBOIDC3 template < class R > std::ostream & operator<<(std::ostream& os, const Iso_cuboidC3& r) { switch(os.iword(IO::mode)) { case IO::ASCII : return os << min() << ' ' << max(); case IO::BINARY : return os << min() << max(); default: return os << "Iso_cuboidC3(" << min() << ", " << max() << ")"; } } #endif // NO_OSTREAM_INSERT_ISO_CUBOIDC3 #ifndef NO_ISTREAM_EXTRACT_ISO_CUBOIDC3 template < class R > std::istream & operator>>(std::istream& is, Iso_cuboidC3& r) { Iso_cuboidC3::Point_3 p, q; is >> p >> q; r = Iso_cuboidC3(p, q); return is; } #endif // NO_ISTREAM_EXTRACT_ISO_CUBOIDC3 CGAL_END_NAMESPACE #endif // CGAL_CARTESIAN_ISO_CUBOID_3_C