// ====================================================================== // // Copyright (c) 2000 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------- // // release : // release_date : // // file : include/CGAL/Cartesian/Triangle_3.C // revision : $Revision$ // revision_date : $Date$ // author(s) : Andreas Fabri // coordinator : INRIA Sophia-Antipolis (Mariette.Yvinec@sophia.inria.fr) // // ====================================================================== #ifndef CGAL_CARTESIAN_TRIANGLE_3_C #define CGAL_CARTESIAN_TRIANGLE_3_C #ifndef CGAL_CARTESIAN_REDEFINE_NAMES_3_H #define CGAL_CTAG #endif #ifdef CGAL_CFG_TYPENAME_BUG #define typename #endif CGAL_BEGIN_NAMESPACE template < class R > TriangleC3::TriangleC3() { new ( static_cast< void*>(ptr)) Threetuple(); } template < class R > TriangleC3:: TriangleC3(const TriangleC3 &t) : Handle_for >(t) {} template < class R > TriangleC3:: TriangleC3(const typename TriangleC3::Point_3 &p, const typename TriangleC3::Point_3 &q, const typename TriangleC3::Point_3 &r) { new ( static_cast< void*>(ptr)) Threetuple(p, q, r); } template < class R > inline TriangleC3::~TriangleC3() {} template < class R > bool TriangleC3::operator==(const TriangleC3 &t) const { int i; if (ptr == t.ptr) return true; for(i=0; i<3; i++) if ( vertex(0) == t.vertex(i) ) break; return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2); } template < class R > inline bool TriangleC3::operator!=(const TriangleC3 &t) const { return !(*this == t); } template < class R > typename TriangleC3::Point_3 TriangleC3::vertex(int i) const { if (i<0) i=(i%3)+3; else if (i>3) i=i%3; return (i==0) ? ptr->e0 : (i==1) ? ptr->e1 : ptr->e2; } template < class R > inline typename TriangleC3::Point_3 TriangleC3::operator[](int i) const { return vertex(i); } template < class R > inline typename TriangleC3::Plane_3 TriangleC3::supporting_plane() const { return Plane_3(vertex(0), vertex(1), vertex(2)); } template < class R > Bbox_3 TriangleC3::bbox() const { return vertex(0).bbox() + vertex(1).bbox() + vertex(2).bbox(); } template < class R > inline TriangleC3 TriangleC3:: transform (const typename TriangleC3::Aff_transformation_3 &t) const { return TriangleC3(t.transform(vertex(0)), t.transform(vertex(1)), t.transform(vertex(2))); } template < class R > bool TriangleC3:: has_on(const typename TriangleC3::Point_3 &p) const { Point_3 o = vertex(0) + supporting_plane().orthogonal_vector(); Vector_3 v0 = vertex(0)-o, v1 = vertex(1)-o, v2 = vertex(2)-o; FT alpha, beta, gamma; solve(v0, v1, v2, p-o, alpha, beta, gamma); return (alpha >= FT(0)) && (beta >= FT(0)) && (gamma >= FT(0)) && ((alpha+beta+gamma == FT(1))); } template < class R > bool TriangleC3::is_degenerate() const { return collinear(vertex(0),vertex(1),vertex(2)); } #ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLEC3 template < class R > std::ostream & operator<<(std::ostream &os, const TriangleC3 &t) { switch(os.iword(IO::mode)) { case IO::ASCII : return os << t[0] << ' ' << t[1] << ' ' << t[2]; case IO::BINARY : return os << t[0] << t[1] << t[2]; default: os << "TriangleC3(" << t[0] << ", " << t[1] << ", " << t[2] <<")"; return os; } } #endif // CGAL_NO_OSTREAM_INSERT_TRIANGLEC3 #ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC3 template < class R > std::istream & operator>>(std::istream &is, TriangleC3 &t) { typename TriangleC3::Point_3 p, q, r; is >> p >> q >> r; t = TriangleC3(p, q, r); return is; } #endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC3 CGAL_END_NAMESPACE #ifdef CGAL_CFG_TYPENAME_BUG #undef typename #endif #endif // CGAL_CARTESIAN_TRIANGLE_3_C