// file: examples/Arrangement_2/example3.C #include "short_names.h" #ifndef CGAL_USE_LEDA // To enable compilation without leda: int main () { return (0); } #else #include #include #include #include #include #include #include typedef leda_real NT; typedef CGAL::Cartesian Kernel; typedef CGAL::Arr_conic_traits_2 Traits; typedef Traits::Point_2 Point_2; typedef Traits::Segment_2 Segment_2; typedef Traits::Circle_2 Circle_2; typedef Traits::Curve_2 Curve_2; typedef Traits::X_monotone_curve_2 X_monotone_curve_2; typedef CGAL::Arr_base_node Base_node; typedef CGAL::Arr_2_default_dcel Dcel; typedef CGAL::Arrangement_2 Arr_2; int main() { Arr_2 arr; // Insert a hyperbolic arc, supported by the hyperbola y = 1/x // (or: xy - 1 = 0) with the end-points (0.25, 4) and (2, 0.5). Point_2 ps1 (0.25, 4); Point_2 pt1 (2, 0.5); Curve_2 c1 (0, 0, 1, 0, 0, -1, ps1, pt1); arr.insert(c1); // Insert a full ellipse, which is (x/4)^2 + (y/2)^2 = 0 rotated by // phi=36.87 degree (such that sin(phi) = 0.6, cos(phi) = 0.8), // yielding: 58x^2 + 72y^2 - 48xy - 360 = 0. Curve_2 c2 (58, 72, -48, 0, 0, -360); arr.insert(c2); // Insert the segment (1, 1) -- (0, -3). Point_2 ps3 (1, 1); Point_2 pt3 (0, -3); Curve_2 c3 (Segment_2 (ps3, pt3)); arr.insert(c3); // Insert a circular arc supported by the circle x^2 + y^2 = 5^2, // with (-3, 4) and (4, 3) as its endpoints. Point_2 ps4 (-3, 4); Point_2 pt4 (4, 3); Circle_2 circ4 (Point_2(0,0), 5*5, CGAL::CLOCKWISE); Curve_2 c4 (circ4, ps4, pt4); arr.insert(c4); // Insert a full unit circle that is centered at (0, 4). Circle_2 circ5 (Point_2(0,4), 1*1, CGAL::COUNTERCLOCKWISE); Curve_2 c5 (circ5); arr.insert(c5); // Insert a parabolic arc that is supported by a parabola y = -x^2 // (or: x^2 + y = 0) and whose end-points are (-sqrt(3), -3) ~ (-1.73, -3) // and (sqrt(2), -2) ~ (1.41, -2). Notice that since the x-coordinates // of the end-points cannot be acccurately represented, we specify them // as the intersections of the parabola with the lines y = -3 and y = -2. Curve_2 c6 (1, 0, 0, 0, 1, 0, // The parabola. Point_2 (-1.73, -3), // Approximation of the source. 0, 0, 0, 0, 1, 3, // The line: y = -3. Point_2 (1.41, -2), // Approximation of the target. 0, 0, 0, 0, 1, 2); // The line: y = -2. arr.insert(c6); // Print out the number of vertices, edges and faces in the arrangement. std::cout << "Number of vertices: " << arr.number_of_vertices() << std::endl; std::cout << "Number of edges: " << arr.number_of_halfedges()/2 << std::endl; std::cout << "Number of faces: " << arr.number_of_faces() << std::endl; return 0; } #endif