// Copyright (c) 1997-2004 Utrecht University (The Netherlands), // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $Source$ // $Revision$ $Date$ // $Name$ // // Author(s) : Andreas Fabri, Herve Bronnimann #ifndef CGAL_CARTESIAN_CIRCLE_2_H #define CGAL_CARTESIAN_CIRCLE_2_H #include #include #include CGAL_BEGIN_NAMESPACE template class CircleC2 { typedef typename R_::FT FT; typedef typename R_::Circle_2 Circle_2; typedef typename R_::Point_2 Point_2; typedef typename R_::Aff_transformation_2 Aff_transformation_2; typedef Triple Rep; typedef typename R_::template Handle::type Base; Base base; public: typedef R_ R; CircleC2() {} CircleC2(const Point_2 ¢er, const FT &squared_radius = FT(0), const Orientation &orient = COUNTERCLOCKWISE) // Is this new? { CGAL_kernel_precondition( ( squared_radius >= FT(0) ) && ( orient != COLLINEAR) ); base = Rep(center, squared_radius, orient); } CircleC2(const Point_2 ¢er, const Orientation &orient) // Is this new? { CGAL_kernel_precondition( orient != COLLINEAR ); base = Rep(center, FT(0), orient); } CircleC2(const Point_2 &p, const Point_2 &q, const Orientation &orient = COUNTERCLOCKWISE) // And this too? { // FIXME : construction CGAL_kernel_precondition( orient != COLLINEAR); typename R::Compute_squared_distance_2 squared_distance; typename R::Construct_midpoint_2 midpoint; if (p != q) { Point_2 center = midpoint(p, q); base = Rep(center, squared_distance(p, center), orient); } else base = Rep(p, FT(0), orient); } CircleC2(const Point_2 &p, const Point_2 &q, const Point_2 &r) { // FIXME : construction typename R::Orientation_2 orientation; typename R::Compute_squared_distance_2 squared_distance; typename R::Construct_circumcenter_2 circumcenter; Orientation orient = orientation(p, q, r); CGAL_kernel_precondition( orient != COLLINEAR); Point_2 center = circumcenter(p, q, r); base = Rep(center, squared_distance(p, center), orient); } bool operator==(const CircleC2 &s) const; bool operator!=(const CircleC2 &s) const; const Point_2 & center() const { return get(base).first; } const FT & squared_radius() const { return get(base).second; } Orientation orientation() const { return get(base).third; } Circle_2 opposite() const; Circle_2 orthogonal_transform(const Aff_transformation_2 &t) const; Oriented_side oriented_side(const Point_2 &p) const; Bounded_side bounded_side(const Point_2 &p) const; bool has_on_boundary(const Point_2 &p) const; bool has_on_negative_side(const Point_2 &p) const; bool has_on_positive_side(const Point_2 &p) const; bool has_on_bounded_side(const Point_2 &p) const; bool has_on_unbounded_side(const Point_2 &p) const; bool is_degenerate() const; Bbox_2 bbox() const; }; template < class R > CGAL_KERNEL_INLINE bool CircleC2::operator==(const CircleC2 &c) const { // FIXME : predicate if (CGAL::identical(base, c.base)) return true; return center() == c.center() && squared_radius() == c.squared_radius() && orientation() == c.orientation(); } template < class R > inline bool CircleC2::operator!=(const CircleC2 &c) const { return !(*this == c); } template < class R > CGAL_KERNEL_MEDIUM_INLINE Oriented_side CircleC2:: oriented_side(const typename CircleC2::Point_2 &p) const { return Oriented_side(bounded_side(p) * orientation()); } template < class R > CGAL_KERNEL_INLINE Bounded_side CircleC2:: bounded_side(const typename CircleC2::Point_2 &p) const { typename R::Compute_squared_distance_2 squared_distance; return Bounded_side(CGAL_NTS compare(squared_radius(), squared_distance(center(),p))); } template < class R > inline bool CircleC2:: has_on_boundary(const typename CircleC2::Point_2 &p) const { return bounded_side(p) == ON_BOUNDARY; } template < class R > inline bool CircleC2:: has_on_bounded_side(const typename CircleC2::Point_2 &p) const { return bounded_side(p) == ON_BOUNDED_SIDE; } template < class R > inline bool CircleC2:: has_on_unbounded_side(const typename CircleC2::Point_2 &p) const { return bounded_side(p) == ON_UNBOUNDED_SIDE; } template < class R > CGAL_KERNEL_INLINE bool CircleC2:: has_on_negative_side(const typename CircleC2::Point_2 &p) const { if (orientation() == COUNTERCLOCKWISE) return has_on_unbounded_side(p); return has_on_bounded_side(p); } template < class R > CGAL_KERNEL_INLINE bool CircleC2:: has_on_positive_side(const typename CircleC2::Point_2 &p) const { if (orientation() == COUNTERCLOCKWISE) return has_on_bounded_side(p); return has_on_unbounded_side(p); } template < class R > inline bool CircleC2::is_degenerate() const { return CGAL_NTS is_zero(squared_radius()); } template < class R > inline typename CircleC2::Circle_2 CircleC2::opposite() const { return CircleC2(center(), squared_radius(), CGAL::opposite(orientation()) ); } template < class R > CGAL_KERNEL_INLINE Bbox_2 CircleC2::bbox() const { typename R::Construct_bbox_2 construct_bbox_2; Bbox_2 b = construct_bbox_2(center()); Interval_nt<> x (b.xmin(), b.xmax()); Interval_nt<> y (b.ymin(), b.ymax()); Interval_nt<> sqr = CGAL::to_interval(squared_radius()); Interval_nt<> r = CGAL::sqrt(sqr); Interval_nt<> minx = x-r; Interval_nt<> maxx = x+r; Interval_nt<> miny = y-r; Interval_nt<> maxy = y+r; return Bbox_2(minx.inf(), miny.inf(), maxx.sup(), maxy.sup()); } template < class R > CGAL_KERNEL_INLINE typename CircleC2::Circle_2 CircleC2::orthogonal_transform (const typename CircleC2::Aff_transformation_2 &t) const { typename R::Vector_2 vec(FT(1), FT(0) ); // unit vector vec = vec.transform(t); // transformed FT sq_scale = vec.squared_length(); // squared scaling factor return CircleC2(t.transform(center()), sq_scale * squared_radius(), t.is_even() ? orientation() : CGAL::opposite(orientation())); } #ifndef CGAL_NO_OSTREAM_INSERT_CIRCLEC2 template < class R > CGAL_KERNEL_INLINE std::ostream & operator<<(std::ostream &os, const CircleC2 &c) { switch(os.iword(IO::mode)) { case IO::ASCII : os << c.center() << ' ' << c.squared_radius() << ' ' << static_cast(c.orientation()); break; case IO::BINARY : os << c.center(); write(os, c.squared_radius()); write(os, static_cast(c.orientation())); break; default: os << "CircleC2(" << c.center() << ", " << c.squared_radius() ; switch (c.orientation()) { case CLOCKWISE: os << ", clockwise)"; break; case COUNTERCLOCKWISE: os << ", counterclockwise)"; break; default: os << ", collinear)"; break; } break; } return os; } #endif // CGAL_NO_OSTREAM_INSERT_CIRCLEC2 #ifndef CGAL_NO_ISTREAM_EXTRACT_CIRCLEC2 template < class R > CGAL_KERNEL_INLINE std::istream& operator>>(std::istream &is, CircleC2 &c) { typename R::Point_2 center; typename R::FT squared_radius; int o; switch(is.iword(IO::mode)) { case IO::ASCII : is >> center >> squared_radius >> o; break; case IO::BINARY : is >> center; read(is, squared_radius); is >> o; break; default: std::cerr << "" << std::endl; std::cerr << "Stream must be in ascii or binary mode" << std::endl; break; } if (is) c = CircleC2(center, squared_radius, static_cast(o)); return is; } #endif // CGAL_NO_ISTREAM_EXTRACT_CIRCLEC2 CGAL_END_NAMESPACE #endif // CGAL_CARTESIAN_CIRCLE_2_H