// Copyright (c) 2000 Utrecht University (The Netherlands), // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $Source$ // $Revision$ $Date$ // $Name$ // // Author(s) : Andreas Fabri, Herve Bronnimann #ifndef CGAL_CARTESIAN_VECTOR_2_H #define CGAL_CARTESIAN_VECTOR_2_H #include #include CGAL_BEGIN_NAMESPACE template < class R_ > class VectorC2 { typedef typename R_::FT FT; typedef typename R_::Point_2 Point_2; typedef typename R_::Vector_2 Vector_2; typedef typename R_::Segment_2 Segment_2; typedef typename R_::Ray_2 Ray_2; typedef typename R_::Line_2 Line_2; typedef typename R_::Direction_2 Direction_2; typedef typename R_::Aff_transformation_2 Aff_transformation_2; typedef Twotuple Rep; typedef typename R_::template Handle::type Base; Base base; public: typedef R_ R; VectorC2() {} VectorC2(const Null_vector &n) { *this = R().construct_vector_2_object()(n); } VectorC2(const Point_2 &a, const Point_2 &b) { *this = R().construct_vector_2_object()(a, b); } VectorC2(const Segment_2 &s) { *this = R().construct_vector_2_object()(s); } VectorC2(const Ray_2 &r) { *this = R().construct_vector_2_object()(r); } VectorC2(const Line_2 &l) { *this = R().construct_vector_2_object()(l); } VectorC2(const FT &x, const FT &y) : base(x, y) {} VectorC2(const FT &hx, const FT &hy, const FT &hw) { if (hw != FT(1)) base = Rep(hx/hw, hy/hw); else base = Rep(hx, hy); } const FT & x() const { return get(base).e0; } const FT & y() const { return get(base).e1; } const FT & hx() const { return x(); } const FT & hy() const { return y(); } FT hw() const { return FT(1); } const FT & cartesian(int i) const; const FT & operator[](int i) const; FT homogeneous(int i) const; int dimension() const { return 2; } Vector_2 operator+(const VectorC2 &w) const; Vector_2 operator-(const VectorC2 &w) const; Vector_2 operator-() const; FT squared_length() const; Vector_2 operator/(const FT &c) const; Direction_2 direction() const; Vector_2 perpendicular(const Orientation &o) const; Vector_2 transform(const Aff_transformation_2 &t) const { return t.transform(*this); } }; template < class R > CGAL_KERNEL_INLINE bool operator==(const VectorC2 &v, const VectorC2 &w) { return w.x() == v.x() && w.y() == v.y(); } template < class R > inline bool operator!=(const VectorC2 &v, const VectorC2 &w) { return !(v == w); } template < class R > inline bool operator==(const VectorC2 &v, const Null_vector &) { return CGAL_NTS is_zero(v.x()) && CGAL_NTS is_zero(v.y()); } template < class R > inline bool operator==(const Null_vector &n, const VectorC2 &v) { return v == n; } template < class R > inline bool operator!=(const VectorC2 &v, const Null_vector &n) { return !(v == n); } template < class R > inline bool operator!=(const Null_vector &n, const VectorC2 &v) { return !(v == n); } template < class R > CGAL_KERNEL_INLINE const typename VectorC2::FT & VectorC2::cartesian(int i) const { CGAL_kernel_precondition( (i == 0) || (i == 1) ); return (i == 0) ? x() : y(); } template < class R > inline const typename VectorC2::FT & VectorC2::operator[](int i) const { return cartesian(i); } template < class R > CGAL_KERNEL_INLINE typename VectorC2::FT VectorC2::homogeneous(int i) const { return (i == 2) ? FT(1) : cartesian(i); } template < class R > CGAL_KERNEL_INLINE typename VectorC2::Vector_2 VectorC2::operator+(const VectorC2 &w) const { return VectorC2(x() + w.x(), y() + w.y()); } template < class R > CGAL_KERNEL_INLINE typename VectorC2::Vector_2 VectorC2::operator-(const VectorC2 &w) const { return VectorC2(x() - w.x(), y() - w.y()); } template < class R > inline typename VectorC2::Vector_2 VectorC2::operator-() const { return R().construct_opposite_vector_2_object()(*this); } template < class R > CGAL_KERNEL_INLINE typename VectorC2::FT VectorC2::squared_length() const { return CGAL_NTS square(x()) + CGAL_NTS square(y()); } template < class R > CGAL_KERNEL_INLINE typename VectorC2::Vector_2 VectorC2:: operator/(const typename VectorC2::FT &c) const { return VectorC2( x()/c, y()/c); } template < class R > inline typename VectorC2::Direction_2 VectorC2::direction() const { return Direction_2(x(), y()); } template < class R > CGAL_KERNEL_MEDIUM_INLINE typename VectorC2::Vector_2 VectorC2::perpendicular(const Orientation &o) const { CGAL_kernel_precondition( o != COLLINEAR ); if (o == COUNTERCLOCKWISE) return VectorC2(-y(), x()); else return VectorC2(y(), -x()); } #ifndef CGAL_NO_OSTREAM_INSERT_VECTORC2 template < class R > std::ostream & operator<<(std::ostream &os, const VectorC2 &v) { switch(os.iword(IO::mode)) { case IO::ASCII : return os << v.x() << ' ' << v.y(); case IO::BINARY : write(os, v.x()); write(os, v.y()); return os; default: return os << "VectorC2(" << v.x() << ", " << v.y() << ')'; } } #endif // CGAL_NO_OSTREAM_INSERT_VECTORC2 #ifndef CGAL_NO_ISTREAM_EXTRACT_VECTORC2 template < class R > std::istream & operator>>(std::istream &is, VectorC2 &p) { typename R::FT x, y; switch(is.iword(IO::mode)) { case IO::ASCII : is >> x >> y; break; case IO::BINARY : read(is, x); read(is, y); break; default: std::cerr << "" << std::endl; std::cerr << "Stream must be in ascii or binary mode" << std::endl; break; } if (is) p = VectorC2(x, y); return is; } #endif // CGAL_NO_ISTREAM_EXTRACT_VECTORC2 CGAL_END_NAMESPACE #endif // CGAL_CARTESIAN_VECTOR_2_H