// ====================================================================== // // Copyright (c) 2002 The CGAL Consortium // // This software and related documentation is part of an INTERNAL release // of the Computational Geometry Algorithms Library (CGAL). It is not // intended for general use. // // ---------------------------------------------------------------------- // // release : $CGAL_Revision: CGAL-2.5-I-99 $ // release_date : $CGAL_Date: 2003/05/23 $ // // file : include/CGAL/Weighted_Minkowski_distance.h // package : ASPAS (3.12) // maintainer : Hans Tangelder // revision : 3.0 // revision_date : 2003/07/10 // authors : Hans Tangelder () // coordinator : Utrecht University // // ====================================================================== // Note: Use p=0 to denote the weighted Linf-distance // For 0 #include namespace CGAL { template class Weighted_Minkowski_distance { public: typedef typename SearchTraits::Point_d Point_d; typedef typename SearchTraits::FT FT; typedef std::vector Weight_vector; private: typedef typename SearchTraits::Cartesian_const_iterator_d Coord_iterator; FT power; Weight_vector the_weights; public: // default constructor Weighted_Minkowski_distance() : power(2) {} Weighted_Minkowski_distance(const int d) : power(2) { the_weights.reserve(d); for (unsigned int i = 0; i < d; ++i) the_weights[i]=FT(1); } //default copy constructor and destructor Weighted_Minkowski_distance (FT pow, int dim, const Weight_vector& weights) : power(pow) { assert(power >= FT(0)); assert(dim==weights.size()); for (unsigned int i = 0; i < weights.size(); ++i) assert(weights[i]>=FT(0)); the_weights.resize(weights.size()); the_weights = weights; } template Weighted_Minkowski_distance (FT pow, int dim, InputIterator begin, InputIterator end) : power(pow) { assert(power >= FT(0)); the_weights.resize(dim); std::copy(begin, end, the_weights.begin()); for (unsigned int i = 0; i < dim; ++i){ the_weights[i] = *begin; ++begin; assert(the_weights[i]>=FT(0)); } assert(begin == end); } inline FT transformed_distance(const Point_d& q, const Point_d& p) { FT distance = FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it; Coord_iterator qit = construct_it(q), qe = construct_it(q,1), pit = construct_it(p); if (power == FT(0)) { for (unsigned int i = 0; qit != qe; ++qit, ++i) if (the_weights[i] * fabs((*qit) - (*pit)) > distance) distance = the_weights[i] * fabs((*qit)-(*pit)); } else for (unsigned int i = 0; qit != qe; ++qit, ++i) distance += the_weights[i] * pow(fabs((*qit)-(*pit)),power); return distance; } inline FT min_distance_to_rectangle(const Point_d& q, const Kd_tree_rectangle& r) const { FT distance = FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it; Coord_iterator qit = construct_it(q), qe = construct_it(q,1); if (power == FT(0)) { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if (the_weights[i]*(r.min_coord(i) - (*qit)) > distance) distance = the_weights[i] * (r.min_coord(i)- (*qit)); if (the_weights[i] * ((*qit) - r.max_coord(i)) > distance) distance = the_weights[i] * ((*qit)-r.max_coord(i)); } } else { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if ((*qit) < r.min_coord(i)) distance += the_weights[i] * pow(r.min_coord(i)-(*qit),power); if ((*qit) > r.max_coord(i)) distance += the_weights[i] * pow((*qit)-r.max_coord(i),power); } }; return distance; } inline FT max_distance_to_rectangle(const Point_d& q, const Kd_tree_rectangle& r) const { FT distance=FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it; Coord_iterator qit = construct_it(q), qe = construct_it(q,1); if (power == FT(0)) { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if ((*qit) >= (r.min_coord(i) + r.max_coord(i))/FT(2.0)) if (the_weights[i] * ((*qit) - r.min_coord(i)) > distance) distance = the_weights[i] * ((*qit)-r.min_coord(i)); else if (the_weights[i] * (r.max_coord(i) - (*qit)) > distance) distance = the_weights[i] * ( r.max_coord(i)-(*qit)); } } else { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if ((*qit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)) distance += the_weights[i] * pow(r.max_coord(i)-(*qit),power); else distance += the_weights[i] * pow((*qit)-r.min_coord(i),power); } }; return distance; } inline FT new_distance(FT dist, FT old_off, FT new_off, int cutting_dimension) const { FT new_dist; if (power == FT(0)) { if (the_weights[cutting_dimension]*fabs(new_off) > dist) new_dist= the_weights[cutting_dimension]*fabs(new_off); else new_dist=dist; } else { new_dist = dist + the_weights[cutting_dimension] * (pow(fabs(new_off),power)-pow(fabs(old_off),power)); } return new_dist; } inline FT transformed_distance(FT d) const { if (power <= FT(0)) return d; else return pow(d,power); } inline FT inverse_of_transformed_distance(FT d) const { if (power <= FT(0)) return d; else return pow(d,1/power); } }; // class Weighted_Minkowski_distance } // namespace CGAL #endif // WEIGHTED_MINKOWSKI_DISTANCE_H