Subdivision algorithms contain two major components: \emph{\tr} and \emph{\gm}. The \tr\ reparameterizes the source mesh into the target mesh. The \gm\ transforms a submesh on the source mesh to a vertex on the refined mesh. The source submesh (with the normalized weighting) is called the \emph{stencil}. A proper combination of a \tr\ and a set of rules of \gm\ define a valid subdivision scheme. Figure \ref{fig:RefSchemes} shows the local configurations of the major refinements employed in subdivision algorithms, which include Catmull-Clark subdivision (PQQ) \cite{cc}, Loop subdivision (PTQ) \cite{loop}, Doo-Sabin subdivision (DQQ) \cite{ds} and $\sqrt{3}$ subdivision \cite{sqrt3}. Subdivisions, such as Quad-Triangle subdivision (PQQ and PTQ) \cite{qts,l-pg-03}, may employ a hybrid refinement consisting of two different refinements. \begin{figure} \centering \psfrag{PQQ}[]{\scriptsize PQQ} \psfrag{PTQ}[]{\scriptsize PTQ} \psfrag{DQQ}[]{\scriptsize DQQ} \psfrag{Sqrt3}[]{\scriptsize $\sqrt{3}$} \epsfig{file=figs/RefSchemes.eps, width=7cm} \caption{Refinement schemes in practice: primal quadrilateral quadrisection (PQQ), primal triangle quadrisection (PTQ), dual quadrilateral quadrisection (DQQ) and $\sqrt{3}$ triangulation.} \label{fig:RefSchemes} \end{figure} The \gm\ multiplies the stencils and generates the corresponding vertex on the refined mesh. %The stencil usually specifies an affine map of the %submesh. Figure \ref{fig:RefMap} demonstrates the examples of the correspondence between a stencil and its vertex. According to the employed refinement scheme, subdivisions may have several distinct stencils (Figure \ref{fig:RefMap} (a-c)). \begin{figure} \centering \psfrag{A}[]{(a)} \psfrag{B}[]{(b)} \psfrag{C}[]{(c)} \psfrag{D}[]{(d)} \epsfig{file=figs/RefMap.eps, width=7cm} \caption{The stencil (vertex weights are not shown) and its vertex in the Catmull-Clark subdivision (a-c) and Doo-Sabin subdivision (d). Catmull-Clark subdivision has three stencils: facet-stencil (a), edge-stencil (b) and vertex-stencil (c). Doo-Sabin subdivision has only corner-stencil (d).} \label{fig:RefMap} \end{figure} % templated rules: a generic framework for subdivisions %\subsection{Generic Subdivisions} %\label{sec:subtempl} \input subtempl \subsection{Sqrt 3} % connectivity ops: specific polyhedron algorithms (sqrt3 subdivisions) %\subsection{$\sqrt{3}$-Subdivision using Euler Operators} \input sqrt3 % inc builder: specific polyhedron algorithms (qt subdivisions) %\subsection{Quad-triangle Subdivision using modifier} %\input qt