// Copyright (c) 2005 Tel-Aviv University (Israel). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you may redistribute it under // the terms of the Q Public License version 1.0. // See the file LICENSE.QPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Idit Haran // (based on old version by Oren Nechushtan and Iddo Hanniel) #ifndef CGAL_ARR_TRAPEZOID_RIC_POINT_LOCATION_H #define CGAL_ARR_TRAPEZOID_RIC_POINT_LOCATION_H /*! \file * Definition of the Arr_trapezoid_ric_point_location template. */ #include #include #include CGAL_BEGIN_NAMESPACE /*! * \class * Mapping of an x-monotone curve to the halfedge associated with it. */ template class PL_X_curve_plus: public Arrangement_::X_monotone_curve_2 { public: typedef Arrangement_ Arrangement_2; typedef typename Arrangement_2::Traits_2 Traits_2; typedef typename Arrangement_2::Halfedge_handle Halfedge_handle; typedef typename Arrangement_2::X_monotone_curve_2 X_monotone_curve_2; protected: //Data members Halfedge_handle parent; // The halfedge associated with the curve. public: /*! Default constructor. */ PL_X_curve_plus() : X_monotone_curve_2(), parent() {} /*! Constructor from a curve and a halfedge. */ PL_X_curve_plus (const X_monotone_curve_2& cv, const Halfedge_handle& p) : X_monotone_curve_2(cv), parent(p) {} /*! Constrtuctor from a halfedge only. */ PL_X_curve_plus(const Halfedge_handle& p) : X_monotone_curve_2(p->curve()), parent(p) {} /*! Constrtuctor from a curve only. */ PL_X_curve_plus(const X_monotone_curve_2 &cv) : X_monotone_curve_2(cv), parent() {} /*! Get the parent halfedge. */ Halfedge_handle get_parent() const { return (parent); } }; /*! \class * A class that answers point-location and queries * on a planar arrangement using the trapezoid_ric algorithm. * The Arrangement parameter corresponds to an arrangement instantiation. */ template class Arr_trapezoid_ric_point_location : public Arr_observer { public: typedef Arrangement_ Arrangement_2; typedef typename Arrangement_2::Traits_2 Traits_2; typedef typename Arrangement_2::Vertex_const_handle Vertex_const_handle; typedef typename Arrangement_2::Halfedge_const_handle Halfedge_const_handle; typedef typename Arrangement_2::Face_const_handle Face_const_handle; typedef typename Arrangement_2::Vertex_handle Vertex_handle; typedef typename Arrangement_2::Halfedge_handle Halfedge_handle; typedef typename Arrangement_2::Face_handle Face_handle; typedef typename Arrangement_2::Halfedge_iterator Halfedge_iterator; typedef typename Arrangement_2::Vertex_const_iterator Vertex_const_iterator; typedef typename Arrangement_2::Edge_const_iterator Edge_const_iterator; typedef typename Arrangement_2::Hole_const_iterator Hole_const_iterator; typedef typename Arrangement_2::Halfedge_const_iterator Halfedge_const_iterator; typedef typename Arrangement_2::Halfedge_around_vertex_const_circulator Halfedge_around_vertex_const_circulator; typedef typename Arrangement_2::Ccb_halfedge_const_circulator Ccb_halfedge_const_circulator; typedef typename Arrangement_2::Ccb_halfedge_circulator Ccb_halfedge_circulator; typedef typename Arrangement_2::Isolated_vertex_const_iterator Isolated_vertex_const_iterator; typedef typename Traits_2::Point_2 Point_2; typedef typename Traits_2::X_monotone_curve_2 X_monotone_curve_2; typedef std::list Edge_list; typedef typename Edge_list::iterator Std_edge_iterator; typedef PL_X_curve_plus X_curve_plus; typedef Arr_traits_basic_adaptor_2 Traits_adaptor_2; typedef CGAL::Td_traits Td_traits; typedef Trapezoidal_decomposition_2 Trapezoidal_decomposition; typedef std::vector Halfedge_handle_container; typedef typename Halfedge_handle_container::iterator Halfedge_handle_iterator; protected: typedef Trapezoidal_decomposition TD; // Data members: const Traits_adaptor_2 *traits; // Its associated traits object. TD td; // instance of trapezoidal decomposition const Td_traits* td_traits;// instance of the TD traits //for the notification functions X_monotone_curve_2 m_curve_before_split; X_monotone_curve_2 m_curve_before_merge1; X_monotone_curve_2 m_curve_before_merge2; public: /*! Default constructor. */ Arr_trapezoid_ric_point_location (bool rebuild = true) : traits (NULL), td_traits(NULL) { td.set_needs_update(rebuild); } /*! Constructor given an arrangement. */ Arr_trapezoid_ric_point_location (const Arrangement_2& arr) : Arr_observer (const_cast(arr)) { traits = static_cast (arr.get_traits()); td_traits = new Td_traits(*traits); td.init_traits(td_traits); build_trapezoid_ric(); } /*! Destructor. */ ~Arr_trapezoid_ric_point_location () { if (td_traits) delete (td_traits); } /*! * Locate the arrangement feature containing the given point. * \param p The query point. * \return An object representing the arrangement feature containing the * query point. This object is either a Face_const_handle or a * Halfedge_const_handle or a Vertex_const_handle. */ Object locate (const Point_2& p) const; /*! * Locate the arrangement feature which a upward vertical ray emanating from * the given point hits. * \param p The query point. * \return An object representing the arrangement feature the ray hits. * This object is either an empty object or a * Halfedge_const_handle or a Vertex_const_handle. */ Object ray_shoot_up (const Point_2& p) const { return (_vertical_ray_shoot (p, true)); } /*! * Locate the arrangement feature which a downward vertical ray emanating * from the given point hits. * \param p The query point. * \return An object representing the arrangement feature the ray hits. * This object is either an empty object or a * Halfedge_const_handle or a Vertex_const_handle. */ Object ray_shoot_down (const Point_2& p) const { return (_vertical_ray_shoot (p, false)); } /// \name Notification functions, inherited and overloaded from the // base observer. //@{ virtual void before_assign (const Arrangement_2& arr) { clear_trapezoid_ric(); traits = static_cast (arr.get_traits()); } virtual void after_assign () { build_trapezoid_ric(); } virtual void before_clear () { clear_trapezoid_ric (); } virtual void after_clear (Face_handle /* u */) { build_trapezoid_ric(); } virtual void before_attach (const Arrangement_2& arr) { clear_trapezoid_ric(); traits = static_cast (arr.get_traits()); td_traits = new Td_traits(*traits); td.init_traits(td_traits); } virtual void after_attach () { build_trapezoid_ric(); } virtual void before_detach () { clear_trapezoid_ric(); } virtual void after_create_edge (Halfedge_handle e) { // Postcondition: h->curve() with a reference back to h // is inserted into TD. td.insert(X_curve_plus(e)); } //TODO IDIT OREN: what can be done in order to avoid the need //to save the original curve is to find the common endpoint of the //two new halfedges, locate it in the trapezoid in order to find the //curve it lies on, which is the curve that was split, and then remove //this curve. virtual void before_split_edge (Halfedge_handle e, Vertex_handle /* v */, const X_monotone_curve_2& /* c1 */, const X_monotone_curve_2& /* c2 */) { //save this curve for the "after" function. m_curve_before_split = e->curve(); } virtual void after_split_edge (Halfedge_handle e1, Halfedge_handle e2) { td.split_edge(X_curve_plus(m_curve_before_split), X_curve_plus(e1), X_curve_plus(e2)); } //TODO IDIT OREN: create a merged X_curve_plus withput a halfedge, // and in the "after" function update the halfedge. // think ... virtual void before_merge_edge (Halfedge_handle e1, Halfedge_handle e2, const X_monotone_curve_2& /* c */) { //save the curves for the "after" function. m_curve_before_merge1 = e1->curve(); m_curve_before_merge2 = e2->curve(); } virtual void after_merge_edge (Halfedge_handle e) { td.merge_edge(X_curve_plus(m_curve_before_merge1), X_curve_plus(m_curve_before_merge2), X_curve_plus(e)); } virtual void before_remove_edge (Halfedge_handle e) { //called before combinatoric deletion td.remove(X_curve_plus(e)); } //@} public: #ifdef CGAL_TD_DEBUG void debug() { td.debug(); } #endif protected: /*! Clear the trapezoidal decomposition. */ inline void clear_trapezoid_ric () { td.clear(); } /*! Construct the trapezoidal decomposition. */ void build_trapezoid_ric () { td.clear(); Halfedge_handle_container c; Edge_const_iterator eit; Halfedge_const_handle hh; Arrangement_2 *arr = this->arrangement(); for (eit = arr->edges_begin(); eit != arr->edges_end(); ++eit) { hh = eit; c.push_back(hh); } // Random shuffle of the halfedges. std::random_shuffle (c.begin (), c.end ()); Halfedge_handle_iterator cit; Halfedge_handle he; for (cit = c.begin(); cit < c.end(); cit++) { hh = *cit; he = arr->non_const_handle(hh); td.insert(X_curve_plus(he)); } } /*! * Locate the arrangement feature which a vertical ray emanating from the * given point hits, considering isolated vertices. * \param p The query point. * \param shoot_up Indicates whether the ray is directed upward or downward. * \return An object representing the arrangement feature the ray hits. * This object is either a Halfedge_const_handle, * a Vertex_const_handle or an empty object. */ Object _vertical_ray_shoot (const Point_2& p, bool shoot_up) const; /*! In vertical ray shoot, when the closest halfedge is found * (or unbounded face) * we check the isolated vertices inside the face to check whether there * is an isolated vertex right above/below the query point. */ Object _check_isolated_for_vertical_ray_shoot (Halfedge_const_handle halfedge_found, const Point_2& p, bool shoot_up) const; }; CGAL_END_NAMESPACE // The member-function definitions can be found under: #include #endif