// Copyright (c) 2000 Utrecht University (The Netherlands), // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg // (Germany), Max-Planck-Institute Saarbrucken (Germany), RISC Linz (Austria), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $Source$ // $Revision$ $Date$ // $Name$ // // Author(s) : Andreas Fabri, Herve Bronnimann #ifndef CGAL_CARTESIAN_TRIANGLE_2_H #define CGAL_CARTESIAN_TRIANGLE_2_H #include #include CGAL_BEGIN_NAMESPACE template class TriangleC2 : public R_::template Handle >::type { CGAL_VC7_BUG_PROTECTED typedef typename R_::FT FT; typedef typename R_::Point_2 Point_2; typedef typename R_::Vector_2 Vector_2; typedef typename R_::Triangle_2 Triangle_2; typedef typename R_::Aff_transformation_2 Aff_transformation_2; typedef Threetuple rep; typedef typename R_::template Handle::type base; public: typedef R_ R; TriangleC2() {} TriangleC2(const Point_2 &p, const Point_2 &q, const Point_2 &r) : base(rep(p, q, r)) {} bool operator==(const TriangleC2 &s) const; bool operator!=(const TriangleC2 &s) const; const Point_2 & vertex(int i) const; const Point_2 & operator[](int i) const; Triangle_2 opposite() const; Triangle_2 transform(const Aff_transformation_2 &t) const { return TriangleC2(t.transform(vertex(0)), t.transform(vertex(1)), t.transform(vertex(2))); } Orientation orientation() const; Oriented_side oriented_side(const Point_2 &p) const; Bounded_side bounded_side(const Point_2 &p) const; bool has_on_boundary(const Point_2 &p) const; bool has_on_bounded_side(const Point_2 &p) const; bool has_on_unbounded_side(const Point_2 &p) const; bool has_on_positive_side(const Point_2 &p) const; bool has_on_negative_side(const Point_2 &p) const; bool is_degenerate() const; Bbox_2 bbox() const; FT area() const; }; template < class R > CGAL_KERNEL_MEDIUM_INLINE bool TriangleC2::operator==(const TriangleC2 &t) const { if (identical(t)) return true; int i; for(i=0; i<3; i++) if ( vertex(0) == t.vertex(i) ) break; return (i<3) && vertex(1) == t.vertex(i+1) && vertex(2) == t.vertex(i+2); } template < class R > inline bool TriangleC2::operator!=(const TriangleC2 &t) const { return !(*this == t); } template < class R > CGAL_KERNEL_MEDIUM_INLINE const typename TriangleC2::Point_2 & TriangleC2::vertex(int i) const { if (i>2) i = i%3; else if (i<0) i = (i%3) + 3; return (i==0) ? Ptr()->e0 : (i==1) ? Ptr()->e1 : Ptr()->e2; } template < class R > inline const typename TriangleC2::Point_2 & TriangleC2::operator[](int i) const { return vertex(i); } template < class R > CGAL_KERNEL_MEDIUM_INLINE typename TriangleC2::FT TriangleC2::area() const { typename R::Construct_vector_2 construct_vector; typename R::Vector_2 v1 = construct_vector(vertex(0), vertex(1)); typename R::Vector_2 v2 = construct_vector(vertex(0), vertex(2)); return det2x2_by_formula(v1.x(), v1.y(), v2.x(), v2.y())/FT(2); } template < class R > inline Orientation TriangleC2::orientation() const { typename R::Orientation_2 orientation; return orientation(vertex(0), vertex(1), vertex(2)); } template < class R > CGAL_KERNEL_LARGE_INLINE Bounded_side TriangleC2:: bounded_side(const typename TriangleC2::Point_2 &p) const { typename R::Collinear_are_ordered_along_line_2 collinear_are_ordered_along_line; typename R::Orientation_2 orientation; Orientation o1 = orientation(vertex(0), vertex(1), p), o2 = orientation(vertex(1), vertex(2), p), o3 = orientation(vertex(2), vertex(3), p); if (o2 == o1 && o3 == o1) return ON_BOUNDED_SIDE; return (o1 == COLLINEAR && collinear_are_ordered_along_line(vertex(0), p, vertex(1))) || (o2 == COLLINEAR && collinear_are_ordered_along_line(vertex(1), p, vertex(2))) || (o3 == COLLINEAR && collinear_are_ordered_along_line(vertex(2), p, vertex(3))) ? ON_BOUNDARY : ON_UNBOUNDED_SIDE; } template < class R > CGAL_KERNEL_LARGE_INLINE Oriented_side TriangleC2:: oriented_side(const typename TriangleC2::Point_2 &p) const { typename R::Collinear_are_ordered_along_line_2 collinear_are_ordered_along_line; typename R::Orientation_2 orientation; // depends on the orientation of the vertices Orientation o1 = orientation(vertex(0), vertex(1), p), o2 = orientation(vertex(1), vertex(2), p), o3 = orientation(vertex(2), vertex(3), p), ot = orientation(vertex(0), vertex(1), vertex(2)); if (o1 == ot && o2 == ot && o3 == ot) // ot cannot be COLLINEAR return Oriented_side(ot); return (o1 == COLLINEAR && collinear_are_ordered_along_line(vertex(0), p, vertex(1))) || (o2 == COLLINEAR && collinear_are_ordered_along_line(vertex(1), p, vertex(2))) || (o3 == COLLINEAR && collinear_are_ordered_along_line(vertex(2), p, vertex(3))) ? ON_ORIENTED_BOUNDARY : Oriented_side(-ot); } template < class R > CGAL_KERNEL_LARGE_INLINE bool TriangleC2:: has_on_bounded_side(const typename TriangleC2::Point_2 &p) const { return bounded_side(p) == ON_BOUNDED_SIDE; } template < class R > CGAL_KERNEL_LARGE_INLINE bool TriangleC2:: has_on_unbounded_side(const typename TriangleC2::Point_2 &p) const { return bounded_side(p) == ON_UNBOUNDED_SIDE; } template < class R > inline bool TriangleC2:: has_on_boundary(const typename TriangleC2::Point_2 &p) const { return bounded_side(p) == ON_BOUNDARY; } template < class R > inline bool TriangleC2:: has_on_negative_side(const typename TriangleC2::Point_2 &p) const { return oriented_side(p) == ON_NEGATIVE_SIDE; } template < class R > inline bool TriangleC2:: has_on_positive_side(const typename TriangleC2::Point_2 &p) const { return oriented_side(p) == ON_POSITIVE_SIDE; } template < class R > inline bool TriangleC2::is_degenerate() const { typename R::Collinear_2 collinear; return collinear(vertex(0), vertex(1), vertex(2)); } template < class R > inline Bbox_2 TriangleC2::bbox() const { typename R::Construct_bbox_2 construct_bbox_2; return construct_bbox_2(vertex(0)) + construct_bbox_2(vertex(1)) + construct_bbox_2(vertex(2)); } template < class R > inline typename TriangleC2::Triangle_2 TriangleC2::opposite() const { return TriangleC2(vertex(0), vertex(2), vertex(1)); } #ifndef CGAL_NO_OSTREAM_INSERT_TRIANGLEC2 template < class R > std::ostream & operator<<(std::ostream &os, const TriangleC2 &t) { switch(os.iword(IO::mode)) { case IO::ASCII : return os << t[0] << ' ' << t[1] << ' ' << t[2]; case IO::BINARY : return os << t[0] << t[1] << t[2]; default: return os<< "TriangleC2(" << t[0] << ", " << t[1] << ", " << t[2] <<")"; } } #endif // CGAL_NO_OSTREAM_INSERT_TRIANGLEC2 #ifndef CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2 template < class R > std::istream & operator>>(std::istream &is, TriangleC2 &t) { typename R::Point_2 p, q, r; is >> p >> q >> r; if (is) t = TriangleC2(p, q, r); return is; } #endif // CGAL_NO_ISTREAM_EXTRACT_TRIANGLEC2 CGAL_END_NAMESPACE #endif // CGAL_CARTESIAN_TRIANGLE_2_H