\begin{ccRefConcept}{PolynomialTraits_d::PseudoDivision} \ccDefinition This \ccc{AdaptableFunctor} computes the so called {\em pseudo division} of to polynomials $f$ and $g$. Given $f$ and $g \not 0$ this functor computes quotient $q$ and remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ This functor is useful if the regular division is not available, which is the case if \ccc{PolynomialTraits_d::Coefficient} is not a \ccc{Field}. Hence in general it is not possible to invert the leading coefficient of $g$. Instead $f$ is extended by $D$ allowing integral divisions in the internal computation. \ccRefines \ccc{AdaptableFunctor} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{fo} \ccTypedef{typedef void result_type;}{}\ccGlue \ccOperations \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d f, PolynomialTraits_d::Polynomial_d g, PolynomialTraits_d::Polynomial_d & q, PolynomialTraits_d::Polynomial_d & r, PolynomialTraits_d::Coefficient & D);}{ Computes the pseudo division with respect to the outermost variable $x_{d-1}$. } %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \ccRefIdfierPage{PolynomialTraits_d::PseudoDivision}\\ \ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionRemainder}\\ \ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionQuotient}\\ \end{ccRefConcept}