\begin{ccRefConcept}{PolynomialTraits_d::IsZeroAtHomogeneous} \ccDefinition This \ccc{AdaptableFunctor} returns whether a \ccc{PolynomialTraits_d::Polynomial_d} $p$ is zero at a given homogeneous point , which is represented by an iterator range. \ccRefines \ccc{AdaptableFunctor} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccCreationVariable{is_zero_at_homogeneous} \ccTypedef{typedef bool result_type;}{}\ccGlue \ccOperations template \ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p, InputIterator begin, InputIterator end );}{ Computes whether $p$ is zero at the given homogeneous point, where $begin$ is refering to the innermost variable. \ccPrecond{\ccc{std::iterator_traits< InputIterator >::value_type} is \ccc{PolynomialTraits_d::Innermost_coefficient}.} \ccPrecond (end-begin == \ccc{PolynomialTraits_d::d} + 1) } %\ccHasModels \ccSeeAlso \ccRefIdfierPage{Polynomial_d}\\ \ccRefIdfierPage{PolynomialTraits_d}\\ \end{ccRefConcept}