%% ============================================================================= %% The CGAL Reference Manual %% Chapter: STL Extensions - The Reference Part %% ----------------------------------------------------------------------------- %% file : doc_tex/support/STL_Extension/STL_Extension_ref/stl_extension.tex %% author: Michael Hoffmann, Lutz Kettner %% ----------------------------------------------------------------------------- %% $CGAL_Chapter: STL_Extension $ %% $Id$ %% $Date$ %% ============================================================================= %% +=========================================================================+ %% +---------------------------------------------+ \begin{ccRefFunction}{predecessor} \label{sectionPredecessor} \label{sectionGenericFunctions} \ccDefinition The function \ccRefName\ returns the previous iterator, i.e. the result of \ccc{operator--} on a bidirectional iterator. \ccInclude{CGAL/algorithm.h} \ccThree{BidirectionalIterator}{predecessor}{} \ccFunction{template BidirectionalIterator predecessor(BidirectionalIterator it);} {returns \ccc{--it}.} \ccSeeAlso \ccRefIdfierPage{CGAL::successor} \end{ccRefFunction} %% +---------------------------------------------+ \begin{ccRefFunction}{successor} \label{sectionSuccessor} \ccDefinition The function \ccRefName\ returns the next iterator, i.e. the result of \ccc{operator++} on a forward iterator. \ccInclude{CGAL/algorithm.h} \ccThree{ForwardIterator}{successor}{} \ccFunction{template ForwardIterator successor(ForwardIterator it);} {returns \ccc{++it}.} \ccSeeAlso \ccRefIdfierPage{CGAL::predecessor} \end{ccRefFunction} %% +---------------------------------------------+ \begin{ccRefFunction}{copy_n} \label{sectionCopyN} \ccDefinition The function \ccRefName\ copies $n$ items from an input iterator to an output iterator which is useful for possibly infinite sequences of random geometric objects.\footnote{% The \stl\ release June 13, 1997, from SGI contains an equivalent function, but it is not part of the ISO standard.} \ccInclude{CGAL/algorithm.h} \ccThree{OutputIterator}{copy_n}{} \ccFunction{template OutputIterator copy_n(InputIterator first, Size n, OutputIterator result);}{copies the first $n$ items from \ccc{first} to \ccc{result}. Returns the value of \ccc{result} after inserting the $n$ items.} \ccSeeAlso \ccRefIdfierPage{CGAL::Counting_iterator} \end{ccRefFunction} %% +---------------------------------------------+ \begin{ccRefFunction}{min_max_element} \label{sectionMinmaxelement} \ccDefinition The function \ccRefName\ computes the minimal and the maximal element of a range. It is modeled after the STL functions \ccc{min_element} and \ccc{max_element}. The advantage of \ccc{min_max_element} compared to calling both STL functions is that one only iterates once over the sequence. This is more efficient especially for large and/or complex sequences. \ccInclude{CGAL/algorithm.h} \ccFunction{template < class ForwardIterator > std::pair< ForwardIterator, ForwardIterator > min_max_element(ForwardIterator first, ForwardIterator last);}{returns a pair of iterators where the first component refers to the minimal and the second component refers to the maximal element in the range [\ccc{first}, \ccc{last}). The ordering is defined by \ccc{operator<} on the value type of \ccc{ForwardIterator}.} \ccFunction{template < class ForwardIterator, class CompareMin, class CompareMax > std::pair< ForwardIterator, ForwardIterator > min_max_element(ForwardIterator first, ForwardIterator last, CompareMin comp_min, CompareMax comp_max);}{returns a pair of iterators where the first component refers to the minimal and the second component refers to the maximal element in the range [\ccc{first}, \ccc{last}). \ccRequire \ccc{CompareMin} and \ccc{CompareMax} are adaptable binary function objects: \ccc{VT}~$\times$~\ccc{VT}~$\rightarrow$~\ccc{bool} where \ccc{VT} is the value type of \ccc{ForwardIterator}.} \ccExample The following example program computes the minimal and maximal element of the sequence $(3,\,6,\,5)$. Hence the output is \ccc{min = 3, max = 6}. \ccIncludeExampleCode{STL_Extension/min_max_element_example_noheader.cpp} \end{ccRefFunction} %% Michael: I commented these, as I think they should be replaced by combining %% Filter_iterator with std::min/max_element(). %% %% %% +---------------------------------------------+ %% \begin{ccRefFunction}{min_element_if} %% \label{sectionMinElementIf} %% \ccDefinition The function \ccRefName\ computes the minimum among %% the elements of a range which satisfy a certain predicate. It is %% modeled after the STL function \ccc{min_element}. %% \ccInclude{CGAL/algorithm.h} %% \ccFunction{template < class ForwardIterator, class Predicate > %% ForwardIterator min_element_if(ForwardIterator first, %% ForwardIterator last, Predicate pred);}{returns an iterator %% referring to the minimal element among those satifying the %% predicate \ccc{pred} in the range [\ccc{first}, \ccc{last}). The %% ordering is defined by the \ccc{operator<} on \ccc{VT} where %% \ccc{VT} is the value type of \ccc{ForwardIterator}. %% \ccRequire \ccc{pred} is an unary function %% object: \ccc{VT}~$\rightarrow$~\ccc{bool}.} %% \ccFunction{template < class ForwardIterator, class Compare, class %% Predicate > ForwardIterator min_element_if(ForwardIterator first, %% ForwardIterator last, Compare comp, Predicate pred);} {return an %% iterator referring to the minimal element among those satifying %% the predicate \ccc{pred} in the range [\ccc{first}, \ccc{last}). %% The ordering is defined by \ccc{comp}. %% \ccRequire \ccc{comp} is a binary function %% object: \ccc{VT}~$\times$~\ccc{VT}~$\rightarrow$~\ccc{bool} where %% \ccc{VT} is the value type of \ccc{ForwardIterator}. \ccc{pred} is %% an unary function object: \ccc{VT}~$\rightarrow$~\ccc{bool}.} %% \ccSeeAlso %% \ccRefIdfierPage{CGAL::max_element_if}\\ %% \ccRefIdfierPage{CGAL::min_max_element} %% \ccExample The following example program computes the minimal odd %% element of the sequence $(3,\,5,\,2)$. Hence the output is %% \ccc{min_odd = 3}. %% \ccIncludeExampleCode{STL_Extension_ref/min_element_if_example_noheader.cpp} %% \end{ccRefFunction} %% %% +---------------------------------------------+ %% \begin{ccRefFunction}{max_element_if} %% \ccDefinition The function \ccRefName\ computes the maximum among %% the elements of a range which satisfy a certain predicate. It is %% modeled after the STL function \ccc{max_element}. %% \ccInclude{CGAL/algorithm.h} %% \ccFunction{template < class ForwardIterator, class Predicate > %% ForwardIterator max_element_if(ForwardIterator first, %% ForwardIterator last, Predicate pred);}{returns an iterator %% referring to the maximal element among those satifying the %% predicate \ccc{pred} in the range [\ccc{first}, \ccc{last}). The %% ordering is defined by the \ccc{operator<} on \ccc{VT} where %% \ccc{VT} is the value type of \ccc{ForwardIterator}. %% \ccRequire \ccc{pred} is an unary function %% object: \ccc{VT}~$\rightarrow$~\ccc{bool}.} %% \ccFunction{template < class ForwardIterator, class Compare, class %% Predicate > ForwardIterator max_element_if(ForwardIterator first, %% ForwardIterator last, Compare comp, Predicate pred);} {return an %% iterator referring to the maximal element among those satifying %% the predicate \ccc{pred} in the range [\ccc{first}, \ccc{last}). %% The ordering is defined by \ccc{comp}. %% \ccRequire \ccc{comp} is a binary function %% object: \ccc{VT}~$\times$~\ccc{VT}~$\rightarrow$~\ccc{bool} where %% \ccc{VT} is the value type of \ccc{ForwardIterator}. \ccc{pred} is %% an unary function object: \ccc{VT}~$\rightarrow$~\ccc{bool}.} %% \ccSeeAlso %% \ccRefIdfierPage{CGAL::min_element_if}\\ %% \ccRefIdfierPage{CGAL::min_max_element} %% \end{ccRefFunction} %% +=========================================================================+ \begin{ccRefClass}{Emptyset_iterator} \label{sectionEmptysetIterator} \ccCreationVariable{i} \ccDefinition The class \ccClassName\ defines an \ccc{OutputIterator} that ignores everything written to it. One can think of it as being connected to \texttt{/dev/null}. \ccInclude{CGAL/iterator.h} \ccIsModel \ccc{OutputIterator} \ccCreation \ccTwo{Emptyset_iterator()}{} \ccConstructor{Emptyset_iterator();}{default constructor.} \ccSeeAlso \ccRefIdfierPage{CGAL::Oneset_iterator}\\ \ccRefIdfierPage{CGAL::Const_oneset_iterator} \end{ccRefClass} \begin{ccRefClass}{Oneset_iterator} \label{sectionOnesetIterator} \ccCreationVariable{i} \ccDefinition The class \ccClassTemplateName\ defines an \ccc{BidirectionalIterator} that always refers to one specific object of type \ccc{T}. Internally, \ccClassTemplateName\ stores a pointer to the referred object. \ccInclude{CGAL/iterator.h} \ccIsModel \ccc{BidirectionalIterator} \ccCreation \ccTwo{Oneset_iterator(T& t);}{} \ccTagFullDeclarations\ccConstructor{Oneset_iterator(T& t);}{creates an iterator referring to \ccc{t}.}\ccTagDefaults \ccSeeAlso \ccRefIdfierPage{CGAL::Emptyset_iterator}\\ \ccRefIdfierPage{CGAL::Const_oneset_iterator} \end{ccRefClass} \begin{ccRefClass}{Const_oneset_iterator} \label{sectionConst_onesetIterator} \ccCreationVariable{i} \ccDefinition The class \ccClassTemplateName\ defines an \ccc{RandomAccessIterator} that always refers to a copy of a specific object of type \ccc{T}. \ccInclude{CGAL/iterator.h} \ccIsModel \ccc{RandomAccessIterator} \ccCreation \ccTwo{Const_oneset_iterator(const T& t);}{} \ccTagFullDeclarations\ccConstructor{Const_oneset_iterator(T& t);}{creates an iterator that always refers to some copy of \ccc{t}. The copy is constructed by invoking \ccc{T}'s copy constructor and remains constant during $i$'s lifetime.}\ccTagDefaults \ccSeeAlso \ccRefIdfierPage{CGAL::Emptyset_iterator}\\ \ccRefIdfierPage{CGAL::Oneset_iterator} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Counting_iterator} \label{sectionCountingIterator} \ccCreationVariable{i} \ccDefinition The iterator adaptor \ccClassTemplateName\ adds a counter to the internal iterator of type \ccc{Iterator} and defines equality of two instances in terms of this counter. It can be used to create finite sequences of possibly infinite sequences of values from input iterators. \ccInclude{CGAL/iterator.h} \ccIsModel \ccc{InputIterator} \ccRequirements \ccc{Iterator} is a model for \ccc{InputIterator}. \ccCreation \ccTwo{IdentityMMMMMM}{} \ccConstructor{Counting_iterator( std::size_t n = 0);}{initializes the internal counter to $n$ and \ccVar\ has a singular value.} \ccConstructor{Counting_iterator( Iterator j, std::size_t n = 0);}{ initializes the internal counter to $n$ and \ccVar\ to $j$.} \ccSeeAlso \ccRefIdfierPage{CGAL::copy_n} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Insert_iterator} \label{sectionInsertIterator} \ccCreationVariable{i} \ccDefinition The output iterator \ccClassTemplateName\ is similar to \ccc{std::insert_iterator}, but differs in that it calls the \ccc{insert()} function of the container without the iterator additional argument. \ccInclude{CGAL/iterator.h} \ccIsModel \ccc{OutputIterator} \ccRequirements \ccc{Container} provides a member function \ccc{insert(const Container::const_reference&)}. \ccCreation \ccTwo{IdentityMMMMMM}{} \ccConstructor{Insert_iterator( Container &c );}{initializes the internal container reference to $c$.} There is also a global function similar to \ccc{std::inserter}: \ccFunction{template < class Container > Insert_iterator inserter(Container &x);} { Constructs \ccc{Insert_iterator(x)}. } \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{N_step_adaptor} \ccCreationVariable{i} \ccDefinition The adaptor \ccRefName\ changes the step width of the iterator or circulator class \ccStyle{I} to $N$. It is itself an iterator or circulator respectively. The behavior is undefined if the adaptor is used on a range [$i,j$) where $j-i$ is not a multiple of $n$. \ccInclude{CGAL/iterator.h} \ccCreation \ccTwo{N_step_adaptor i( I j);;M}{} \ccConstructor{N_step_adaptor(const I& j);}{down cast.} \end{ccRefClass} \begin{ccRefClass}{Filter_iterator} \label{sectionFilterIterator} \ccCreationVariable{i} \ccDefinition The iterator adaptor \ccClassTemplateName\ acts as a filter on a given range. Whenever the iterator is in-- or decremented, it ignores all iterators for which the given \ccc{Predicate} is true. The iterator category is the same as for \ccc{Iterator}. Note: Boost also provides the same functionality via the \ccc{boost::filter_iterator} class. Unfortunately, the semantics chosen for accepting or rejecting elements based on the predicate's result are opposite as the semantic chosen here. What is more, the argument of the predicate is different: the predicate used with \ccc{boost::filter_iterator} must take the value type of the iterator, as argument, and not the iterator itself. \ccInclude{CGAL/iterator.h} \ccRequirements \begin{itemize} \item \ccc{Iterator} is a model for \ccc{ForwardIterator}. \item \ccc{Predicate} is a functor: \ccc{Iterator} $\rightarrow$ \ccc{bool}. \end{itemize} \ccCreation %%\ccTwo{IdentityMMMMMM}{} \ccConstructor{Filter_iterator();}{} \ccConstructor{Filter_iterator(Iterator e, Predicate p, Iterator c = e);} {creates an iterator which filters values according to \ccc{p}. Initializes by taking the first valid iterator (according to \ccc{p}), starting at \ccc{c}, and stopping at \ccc{e} if none is found.} There is also a global function to help the use of \ccClassTemplateName{}: \ccFunction{template < class Iterator, class Predicate > inline Filter_iterator< Iterator, Predicate > filter_iterator(Iterator e, const Predicate& p, Iterator c = e);} { Constructs \ccc{Filter_iterator(e, p, c)}. } \end{ccRefClass} %% +---------------------------------------------+ \begin{ccRefClass}{Join_input_iterator_1} \label{sectionJoinInputIterator} \ccDefinition The class \ccRefName\ joins an iterator and a creator function object. The result is again an iterator (of the same iterator category type as the original iterator) that reads an object from the stream and applies a creator function object to that object. \ccInclude{CGAL/iterator.h} \ccIsModel \ccc{InputIterator} \ccTypes \ccNestedType{value_type}{typedef to \ccc{Creator::result_type}.} \ccCreation\ccCreationVariable{join} \ccConstructor{Join_input_iterator_1( Iterator i, const Creator& creator);} {creates a join iterator from the given iterator $i$ and the functor \ccc{creator}. Applies \ccc{creator} to each item read from $i$.} \ccConstructor{Join_input_iterator_1( Iterator i);} {creates a join iterator from the given iterator $i$ and a default constructed instance of \ccc{Creator}. The latter instance is applied to each item read from $i$.} \ccSeeAlso \ccRefIdfierPage{CGAL::Creator_1} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Inverse_index} \ccDefinition The class \ccClassTemplateName\ constructs an inverse index for a given range [$i,j$) of two iterators or circulators of type \ccc{IC}. The first element $I$ in the range [$i,j$) has the index 0. Consecutive elements are numbered incrementally. The inverse index provides a query for a given iterator or circulator $k$ to retrieve its index number. {\em Precondition:}\/ The iterator or circulator must be either of the random access category or the dereference operator must return stable and distinguishable addresses for the values, e.g.~proxies or non-modifiable iterator with opaque values will not work. \ccInclude{CGAL/iterator.h} \ccCreation\ccCreationVariable{inverse} \ccTwo{Inverse_index< IC,> inverse( IC i, IC j);;}{} \ccConstructor{Inverse_index();}{invalid index.} \ccGlue\ccConstructor{Inverse_index( const IC& i);}{empty inverse index initialized to start at $i$.} \ccGlue\ccConstructor{Inverse_index( const IC& i, const IC& j);} {inverse index initialized with range [$i,j$).} \ccOperations \ccThree{std::size_t}{inverse.find( const T* p);}{} \ccMethod{std::size_t operator[]( const IC& k);}{returns inverse index of $k$. \ccPrecond $k$ has been stored in the inverse index.} \ccMethod{void push_back( const IC& k);}{adds $k$ at the end of the indices.} \ccImplementation For random access iterators or circulators, it is done in constant time by subtracting $i$. For other iterator categories, an \stl\ \ccc{map} is used, which results in a $\log j-i$ query time. The comparisons are done using the operator \ccc{operator<} on pointers. \ccSeeAlso \ccRefIdfierPage{CGAL::Random_access_adaptor}\\ \ccRefIdfierPage{CGAL::Random_access_value_adaptor} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Random_access_adaptor} \ccDefinition The class \ccClassTemplateName\ provides a random access for data structures. Either the data structure supports random access iterators or circulators where this class maps function calls to the iterator or circulator, or a \stl\ \ccc{std::vector} is used to provide the random access. The iterator or circulator of the data structure are of type \ccc{IC}. \ccInclude{CGAL/iterator.h} \ccTypes \ccNestedType{size_type}{size type of the \stl\ \ccc{std::vector}.} \ccCreation\ccCreationVariable{random_access} \ccTwo{Random_access_adaptor< IC> random_access;}{} \ccConstructor{Random_access_adaptor();}{invalid index.} \ccConstructor{Random_access_adaptor( const IC& i);} {empty random access index initialized to start at $i$.} \ccConstructor{Random_access_adaptor( const IC& i, const IC& j);} {random access index initialized to the range [$i,j$).} \ccThree{Dist}{random_access.push_back( IC k);}{} \ccMethod{void reserve( size_type r);}{reserve $r$ entries, if a \ccc{std::vector} is used internally.} \ccOperations \ccMethod{IC operator[]( size_type n);}{returns iterator or circulator to the $n$-th item. \ccPrecond $n <$ number of items in \ccVar.} \ccMethod{void push_back( const IC& k);}{adds $k$ at the end of the indices.} \ccSeeAlso \ccRefIdfierPage{CGAL::Inverse_index}\\ \ccRefIdfierPage{CGAL::Random_access_value_adaptor} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Random_access_value_adaptor} \ccDefinition The class \ccClassTemplateName\ provides a random access for data structures. It is derived from \ccc{Random_access_adaptor}. Instead of returning iterators from the \ccc{operator[]} methods, it returns the dereferenced value of the iterator. The iterator or circulator of the data structure are of type \ccc{IC}. Their value type is $T$. \ccInclude{CGAL/iterator.h} \ccOperations Creation and operations see \ccc{Random_access_adaptor}, with the exception of: \ccCreationVariable{random_access} \ccThree{Dist}{random_access.push_back( IC k);}{} \ccMethod{T& operator[]( size_type n);}{returns a reference to the $n$-th item. \ccPrecond $n <$ number of items in \ccVar.} \ccSeeAlso \ccRefIdfierPage{CGAL::Inverse_index}\\ \ccRefIdfierPage{CGAL::Random_access_adaptor} \end{ccRefClass} %% +=========================================================================+ %% +-----------------------------------------------------------------+ \begin{ccRefFunction}{swap_1} \ccDefinition The function \ccRefName\ is used to swap the arguments of a functor. The result is a functor $f'$ that calls the original functor $f$ with the first two arguments exchanged, that is $f'(x,y,\ldots)= f(y,x,\ldots)$. \ccInclude{CGAL/functional.h} \ccFunction{template < class F > typename Swap::Type swap_1(const F& f);}{returns a functor equivalent to \ccc{f}, but where the first two arguments are exchanged. \ccRequire F is a model for \ccc{AdaptableFunctor} with arity $2 \le ar \le 5$.} \ccSeeAlso \ccRefIdfierPage{CGAL::Swap}\\ \ccRefIdfierPage{CGAL::swap_2}\\ \ccRefIdfierPage{CGAL::swap_3}\\ \ccRefIdfierPage{CGAL::swap_4}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{swap_2} \ccDefinition The function \ccRefName\ is used to swap the arguments of a functor. The result is a functor $f'$ that calls the original functor $f$ with the second and third argument exchanged, that is $f'(x,y,z,\ldots)= f(x,z,y,\ldots)$. \ccInclude{CGAL/functional.h} \ccFunction{template < class F > typename Swap::Type swap_2(const F& f);}{returns a functor equivalent to \ccc{f}, but where the second and third argument are exchanged. \ccRequire F is a model for \ccc{AdaptableFunctor} with arity $3 \le ar \le 5$.} \ccSeeAlso \ccRefIdfierPage{CGAL::Swap}\\ \ccRefIdfierPage{CGAL::swap_1}\\ \ccRefIdfierPage{CGAL::swap_3}\\ \ccRefIdfierPage{CGAL::swap_4}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{swap_3} \ccDefinition The function \ccRefName\ is used to swap the arguments of a functor. The result is a functor $f'$ that calls the original functor $f$ with the third and fourth argument exchanged, that is $f'(w,x,y,z,\ldots)= f(w,x,z,y,\ldots)$. \ccInclude{CGAL/functional.h} \ccFunction{template < class F > typename Swap::Type swap_3(const F& f);}{returns a functor equivalent to \ccc{f}, but where the third and fourth argument are exchanged. \ccRequire F is a model for \ccc{AdaptableFunctor} with arity $4 \le ar \le 5$.} \ccSeeAlso \ccRefIdfierPage{CGAL::Swap}\\ \ccRefIdfierPage{CGAL::swap_1}\\ \ccRefIdfierPage{CGAL::swap_2}\\ \ccRefIdfierPage{CGAL::swap_4}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{swap_4} \ccDefinition The function \ccRefName\ is used to swap the arguments of a functor. The result is a functor $f'$ that calls the original functor $f$ with the fourth and fifth argument exchanged, that is $f'(v,w,x,y,z)= f(v,w,x,z,y)$. \ccInclude{CGAL/functional.h} \ccFunction{template < class F > typename Swap::Type swap_4(const F& f);}{returns a functor equivalent to \ccc{f}, but where the fourth and fifth argument are exchanged. \ccRequire F is a model for \ccc{AdaptableFunctor} with arity $5$.} \ccSeeAlso \ccRefIdfierPage{CGAL::Swap}\\ \ccRefIdfierPage{CGAL::swap_1}\\ \ccRefIdfierPage{CGAL::swap_2}\\ \ccRefIdfierPage{CGAL::swap_3}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{bind_1} \ccDefinition The function \ccRefName\ is used to bind the first argument of a functor to some specific value. The result is a functor that takes one argument less and calls the original functor where the first argument is set to the bound value. \ccInclude{CGAL/functional.h} \ccThree{typename Bind< F, A, 1 >::Type}{bind_1}{} \ccFunction{template < class F, class A > typename Bind< F, A, 1 >::Type bind_1(const F& f, const A& a);}{returns a functor equivalent to \ccc{f}, but where the first argument is bound (fixed) to \ccc{a}. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Bind}\\ \ccRefIdfierPage{CGAL::bind_2}\\ \ccRefIdfierPage{CGAL::bind_3}\\ \ccRefIdfierPage{CGAL::bind_4}\\ \ccRefIdfierPage{CGAL::bind_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{bind_2} \ccDefinition The function \ccRefName\ is used to bind the second argument of a functor to some specific value. The result is a functor that takes one argument less and calls the original functor where the second argument is set to the bound value. \ccInclude{CGAL/functional.h} \ccThree{typename Bind< F, A, 1 >::Type}{bind_1}{} \ccFunction{template < class F, class A > typename Bind< F, A, 2 >::Type bind_2(const F& f, const A& a);}{returns a functor equivalent to \ccc{f}, but where the second argument is bound (fixed) to \ccc{a}. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Bind}\\ \ccRefIdfierPage{CGAL::bind_1}\\ \ccRefIdfierPage{CGAL::bind_3}\\ \ccRefIdfierPage{CGAL::bind_4}\\ \ccRefIdfierPage{CGAL::bind_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{bind_3} \ccDefinition The function \ccRefName\ is used to bind the third argument of a functor to some specific value. The result is a functor that takes one argument less and calls the original functor where the third argument is set to the bound value. \ccInclude{CGAL/functional.h} \ccThree{typename Bind< F, A, 1 >::Type}{bind_1}{} \ccFunction{template < class F, class A > typename Bind< F, A, 3 >::Type bind_3(const F& f, const A& a);}{returns a functor equivalent to \ccc{f}, but where the third argument is bound (fixed) to \ccc{a}. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Bind}\\ \ccRefIdfierPage{CGAL::bind_1}\\ \ccRefIdfierPage{CGAL::bind_2}\\ \ccRefIdfierPage{CGAL::bind_4}\\ \ccRefIdfierPage{CGAL::bind_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{bind_4} \ccDefinition The function \ccRefName\ is used to bind the fourth argument of a functor to some specific value. The result is a functor that takes one argument less and calls the original functor where the fourth argument is set to the bound value. \ccInclude{CGAL/functional.h} \ccThree{typename Bind< F, A, 1 >::Type}{bind_1}{} \ccFunction{template < class F, class A > typename Bind< F, A, 4 >::Type bind_4(const F& f, const A& a);}{returns a functor equivalent to \ccc{f}, but where the fourth argument is bound (fixed) to \ccc{a}. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Bind}\\ \ccRefIdfierPage{CGAL::bind_1}\\ \ccRefIdfierPage{CGAL::bind_2}\\ \ccRefIdfierPage{CGAL::bind_3}\\ \ccRefIdfierPage{CGAL::bind_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{bind_5} \ccDefinition The function \ccRefName\ is used to bind the fifth argument of a functor to some specific value. The result is a functor that takes one argument less and calls the original functor where the fifth argument is set to the bound value. \ccInclude{CGAL/functional.h} \ccThree{typename Bind< F, A, 1 >::Type}{bind_1}{} \ccFunction{template < class F, class A > typename Bind< F, A, 5 >::Type bind_5(const F& f, const A& a);}{returns a functor equivalent to \ccc{f}, but where the fifth argument is bound (fixed) to \ccc{a}. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Bind}\\ \ccRefIdfierPage{CGAL::bind_1}\\ \ccRefIdfierPage{CGAL::bind_2}\\ \ccRefIdfierPage{CGAL::bind_3}\\ \ccRefIdfierPage{CGAL::bind_4}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{compare_to_less} \ccDefinition The function \ccRefName\ is used to change a functor returning a \ccc{Comparison_result} to one which returns a bool. The returned functor will return \ccc{true} iff the original one returns \ccc{SMALLER}. \ccInclude{CGAL/function_objects.h} \ccThree{typename Compare_to_less< F >::Type}{compare_to_less}{} \ccFunction{template < class F > Compare_to_less< F > compare_to_less(const F& f);}{returns a functor equivalent to \ccc{f}, but which returns a bool instead of a \ccc{Comparison_result}. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Compare_to_less}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{compose} \ccDefinition The function \ccRefName\ is used to \ccHtmlNoLinksFrom{compose} functors $f_0,\,\ldots,\,f_n$ into each other, thereby creating a new functor $f$. The first argument $f_0$ always denotes the base functor, for which the remaining functors $f_1,\,\ldots,\,f_n$ provide the arguments. If we denote the arity of a functor $f$ by $ar(f)$, then $ar(f) = \sum_{i=1}^n ar(f_i)$, i.e., the arguments of $f$ are distributed among $f_1,\,\ldots,\,f_n$ according to their respective arity. Between one and three functors can be \ccHtmlNoLinksFrom{composed} into the base functor, giving raise to a functor of arity at most five. As an example, consider a binary functor $f_0$ and two functors $f_1$ and $f_2$, with arity three and two, respectively. Composing $f_1$ and $f_2$ into $f_0$ yields a new functor $$ f\::\:(x_0,\,x_1,\,x_2,\,x_3,\,x_4) \mapsto f_0\left(f_1(x_0,\,x_1,\,x_2),\,f_2(x_3,\,x_4)\right) $$ with arity five. \ccInclude{CGAL/functional.h} \ccFunction{template < class F0, class F1 > typename Compose< F0, F1 >::Type compose(const F0& f0, const F1& f1);}{returns the functor \ccc{f0}(\ccc{f1}($\cdot$)) with the same arity as \ccc{f1}. \ccRequire \ccc{f0} is unary function (arity~1). \ccc{f0} and \ccc{f1} are models for \ccc{AdaptableFunctor}.} \ccFunction{template < class F0, class F1, class F2 > typename Compose< F0, F1, F2 >::Type compose(const F0& f0, const F1& f1, const F2& f2);}{returns the functor \ccc{f0}(\ccc{f1}($\cdot$),$\,$\ccc{f2}($\cdot$)) with arity equal to $ar(\ccc{f1})+ar(\ccc{f2})$. \ccRequire \ccc{f0} is binary function (arity~2). \ccc{f0}, \ccc{f1}, and \ccc{f2} are models for \ccc{AdaptableFunctor}.} \ccFunction{template < class F0, class F1, class F2, class F3 > typename Compose< F0, F1, F2, F3 >::Type compose(const F0& f0, const F1& f1, const F2& f2, const F3& f3);}{returns the functor \ccc{f0}(\ccc{f1}($\cdot$),$\,$\ccc{f2}($\cdot$),$\,$\ccc{f3}($\cdot$)) with arity equal to $ar(\ccc{f1})+ar(\ccc{f2})+ar(\ccc{f3})$. \ccRequire \ccc{f0} is ternary function (arity~3). \ccc{f0}, \ccc{f1}, \ccc{f2}, and \ccc{f3} are models for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Compose}\\ \ccRefIdfierPage{CGAL::compose_shared}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{compose_shared} \ccDefinition The function \ccRefName\ is used to \ccHtmlNoLinksFrom{compose} functors $f_0,\,\ldots,\,f_n$ into each other, thereby creating a new functor $f$. The first argument $f_0$ always denotes the base functor, for which the remaining functors $f_1,\,\ldots,\,f_n$ provide the arguments. Contrary to the function \ccc{compose}, the arguments of $f$ are not split among $f_1,\,\ldots,\,f_n$, but instead shared by all the functors. Therefore, all the functors $f_1,\,\ldots,\,f_n$ must have the same arity, which is also the arity of the composed functor $f$. Two or three functors can be composed into the base functor, giving raise to a functor of arity at most five. As an example, consider a binary functor $f_0$ and two binary functors $f_1$ and $f_2$. Composing $f_1$ and $f_2$ into $f_0$ yields a new binary functor $$ f\::\: (x_0,\,x_1) \mapsto f_0\left(f_1(x_0,\,x_1),\,f_2(x_0,\,x_1)\right)\;. $$ \ccInclude{CGAL/functional.h} \ccFunction{template < class F0, class F1, class F2 > typename Compose_shared< F0, F1, F2 >::Type compose_shared(const F0& f0, const F1& f1, const F2& f2);}{returns the functor \ccc{f0}(\ccc{f1}($\cdot$),$\,$\ccc{f2}($\cdot$)) with the same arity as $f1$ (and $f2$). \ccRequire \ccc{f0} is \ccc{AdaptableFunctor} of arity~2. \ccc{f1} and \ccc{f2} are \ccc{AdaptableFunctor}s having the same arity.} \ccFunction{template < class F0, class F1, class F2, class F3 > typename Compose_shared< F0, F1, F2, F3 >::Type compose_shared(const F0& f0, const F1& f1, const F2& f2, const F3& f3);}{returns the functor \ccc{f0}(\ccc{f1}($\cdot$),$\,$\ccc{f2}($\cdot$),$\,$\ccc{f3}($\cdot$)) with the same arity as $f1$ (and $f2$, $f3$). \ccRequire \ccc{f0} is \ccc{AdaptableFunctor} of arity~3. \ccc{f1}, \ccc{f2}, and \ccc{f3} are \ccc{AdaptableFunctor}s having the same arity.} \ccSeeAlso \ccRefIdfierPage{CGAL::Compose_shared}\\ \ccRefIdfierPage{CGAL::compose}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{negate} \ccDefinition The function \ccRefName\ is a functor adaptor. For a given functor $f$, it creates a new functor $f'$ which is the negation of $f$. That is, $f' = !f$. \ccInclude{CGAL/functional.h} \ccFunction{template < typename F > typename Compose< std::logical_not, F >::Type negate(const F& f);}{returns the functor \ccc{!f} with the same arity as \ccc{f}. \ccRequire \ccc{f} is a model for \ccc{AdaptableFunctor}. Unary negation is defined for \ccc{F::result_type}. } \ccSeeAlso \ccRefIdfierPage{CGAL::Compose}\\ \ccRefIdfierPage{CGAL::compose}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefClass}{Swap} \ccDefinition The class \ccRefName\ is used to specify the type of a functor where the arguments \ccc{i} and \ccc{i+1} have been swapped. The class is used in conjunction with the \ccc{swap} functions. \ccInclude{CGAL/functional.h} \ccTypes \ccNestedType{Type}{the functor type.} \ccHeading{Notes} This class encapsulates differences in implementation across various platforms. But in any case, \ccc{Type} refers to a model of \ccc{AdaptableFunctor}. \ccSeeAlso \ccRefIdfierPage{CGAL::swap_1}\\ \ccRefIdfierPage{CGAL::swap_2}\\ \ccRefIdfierPage{CGAL::swap_3}\\ \ccRefIdfierPage{CGAL::swap_4}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefClass} \begin{ccRefClass}{Bind} \ccDefinition The class \ccRefName\ is used to specify the type of a bound functor of type \ccc{F}, i.e., where the \ccc{i}-th argument is bound to some object of type \ccc{A}. The class is used in conjunction with the \ccc{bind} functions. \ccInclude{CGAL/functional.h} \ccTypes \ccNestedType{Type}{the bound type.} \ccHeading{Notes} This class encapsulates the differences in implementation of the binders across various platforms. But in any case, \ccc{Type} refers to a model of \ccc{AdaptableFunctor}. \ccSeeAlso \ccRefIdfierPage{CGAL::bind_1}\\ \ccRefIdfierPage{CGAL::bind_2}\\ \ccRefIdfierPage{CGAL::bind_3}\\ \ccRefIdfierPage{CGAL::bind_4}\\ \ccRefIdfierPage{CGAL::bind_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefClass} \begin{ccRefClass}{Compose} \ccDefinition The class \ccRefName\ is used to specify the type of a composed functor, i.e., the functor that results from composing functors of type \ccc{F1}, \ccc{F2}, and \ccc{F3}, into a functor of type \ccc{F0}. The arguments \ccc{F2} and \ccc{F3} are optional, such that between two and four functors can participate in the composition. The class is used in conjunction with the \ccc{compose} function; see there for an explanation on how exactly the functors are combined. \ccInclude{CGAL/functional.h} \ccTypes \ccNestedType{Type}{type of the composed functor.} \ccHeading{Notes} This class encapsulates the differences in implementation of the composers across various platforms. But in any case, \ccc{Type} refers to a model of \ccc{AdaptableFunctor}. \ccSeeAlso \ccRefIdfierPage{CGAL::compose}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefClass} \begin{ccRefClass}{Compare_to_less} \ccDefinition The class \ccRefName\ is used to convert a functor which returns a \ccc{Comparison_result} to a predicate (returning bool) : it will return true iff the return value of \ccc{F} is \ccc{SMALLER}. The class is used in conjunction with the \ccc{compare_to_less} function; see there for an explanation on how exactly the functors are combined. \ccInclude{CGAL/function_objects.h} \ccTypes \ccNestedType{Type}{type of the composed functor.} \ccSeeAlso \ccRefIdfierPage{CGAL::compare_to_less}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefClass} \begin{ccRefClass}{Compose_shared} \ccDefinition The class \ccRefName\ is used to specify the type of a composed functor, i.e., the functor that results from composing functors of type \ccc{F1}, \ccc{F2}, and \ccc{F3}, into a functor of type \ccc{F0}. The arguments \ccc{F2} and \ccc{F3} are optional, such that between two and four functors can participate in the composition. The class is used in conjunction with the \ccc{compose_shared} function; see there for an explanation on how exactly the functors are combined. \ccInclude{CGAL/functional.h} \ccTypes \ccNestedType{Type}{type of the composed functor.} \ccHeading{Notes} This class encapsulates the differences in implementation of the composers across various platforms. But in any case, \ccc{Type} refers to a model of \ccc{AdaptableFunctor}. \ccSeeAlso \ccRefIdfierPage{CGAL::compose_shared}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefClass} \begin{ccRefFunctionObjectConcept}{AdaptableFunctor} \ccDefinition The concept \ccRefName\ defines an adaptable functor, i.e., a functor that can be used with function object adaptors such as binders and composers. \ccTypes \ccTwo{Arity}{} \ccNestedType{result_type}{return type of the functor.} \ccNestedType{Arity}{defines the arity of the functor, i.e., the number of arguments it takes. The class has to be a specialization of \ccc{CGAL::Arity_tag}, where the template parameter corresponds to the arity of the functor, e.g. \ccc{CGAL::Arity_tag<2>} for binary functors.} \ccOperations \ccTagFullDeclarations\ccCreationVariable{f} \ccMethod{type0 operator()(type1 a1, type2 a2, ..., typen an) const;}{(as many arguments as defined by \ccc{Arity})\\returns \ccc{f(a1,...an)}.} \ccTagDefaults \ccHeading{Notes} Alternatively, the type \ccc{Arity} can be defined in a specialization of \ccc{CGAL::Arity_traits<>} for the functor. This is useful where existing classes cannot be changed easily, e.g. the functors from the standard library. \ccHasModels All functors from the standard library, and all functors from the lower dimensional CGAL kernels. For all kernel functors, their arity is listed in the documentation. Some (few) of them are overloaded with operators of different arities; in this case one of these arities has been chosen as default arity. If you want to adapt the functor to a different arity, use the functor adaptor \ccc{CGAL::Set_arity}. \ccSeeAlso \ccRefIdfierPage{CGAL::Arity_tag}\\ \ccRefIdfierPage{CGAL::Arity_traits}\\ \ccRefIdfierPage{CGAL::Set_arity}\\ \ccRefIdfierPage{CGAL::set_arity_0}\\ \ccRefIdfierPage{CGAL::set_arity_1}\\ \ccRefIdfierPage{CGAL::set_arity_2}\\ \ccRefIdfierPage{CGAL::set_arity_3}\\ \ccRefIdfierPage{CGAL::set_arity_4}\\ \ccRefIdfierPage{CGAL::set_arity_5} \end{ccRefFunctionObjectConcept} \input{STL_Extension_ref/AdaptableUnaryFunction.tex} \input{STL_Extension_ref/AdaptableBinaryFunction.tex} \begin{ccRefClass}{Arity_tag} \ccDefinition The class \ccRefName\ is used to define the arity of a functor, i.e., the number of arguments it takes. It is used as a compile time tag only, that is objects of this type are never created anywhere. \ccInclude{CGAL/functional_base.h} \ccSeeAlso \ccRefConceptPage{AdaptableFunctor} \end{ccRefClass} \begin{ccRefClass}{Arity_traits} \ccDefinition The class \ccRefName\ is used to define the arity of a functor class \ccc{F}, i.e., the number of arguments it takes. It is used as a compile time tag only, that is objects of this type are never created anywhere. Specializations of \ccRefName\ can be defined, where existing functors cannot be changed easily to contain their \ccc{Arity} type. \ccInclude{CGAL/functional_base.h} \ccNestedType{Arity}{\ccc{F::Arity}} \ccSeeAlso \ccRefConceptPage{AdaptableFunctor}\\ \ccRefIdfierPage{CGAL::Arity_tag} \end{ccRefClass} \begin{ccRefClass}{Set_arity} \ccDefinition The class \ccRefName\ is used to specify the type of a functor of type \ccc{F} whose arity has been set explicitly to \ccc{a}. The class is used in conjunction with the \ccc{set_arity} functions. \ccInclude{CGAL/functional.h} \ccTypes \ccNestedType{Type}{the functor type.} \ccHeading{Notes} This class encapsulates the differences in implementation across various platforms. But in any case, \ccc{Type} refers to a model of \ccc{AdaptableFunctor} with arity \ccc{a}. \ccSeeAlso \ccRefIdfierPage{CGAL::set_arity_0}\\ \ccRefIdfierPage{CGAL::set_arity_1}\\ \ccRefIdfierPage{CGAL::set_arity_2}\\ \ccRefIdfierPage{CGAL::set_arity_3}\\ \ccRefIdfierPage{CGAL::set_arity_4}\\ \ccRefIdfierPage{CGAL::set_arity_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefClass} \begin{ccRefFunction}{set_arity_0} \ccDefinition The function \ccRefName\ is used to set the arity of a functor to zero. The result is a functor that takes no arguments and calls the original functor with no arguments. \ccInclude{CGAL/functional.h} \ccThree{Set_arity< F, 0 >::Type}{set_arity_0}{} \ccFunction{template < class F > Set_arity< F, 0 >::Type set_arity_0(const F& f);}{returns a functor equivalent to \ccc{f}, but which has arity zero. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Set_arity}\\ \ccRefIdfierPage{CGAL::set_arity_1}\\ \ccRefIdfierPage{CGAL::set_arity_2}\\ \ccRefIdfierPage{CGAL::set_arity_3}\\ \ccRefIdfierPage{CGAL::set_arity_4}\\ \ccRefIdfierPage{CGAL::set_arity_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{set_arity_1} \ccDefinition The function \ccRefName\ is used to set the arity of a functor to one. The result is a functor that takes one argument and calls the original functor with this argument. \ccInclude{CGAL/functional.h} \ccThree{Set_arity< F, 1 >::Type}{set_arity_1}{} \ccFunction{template < class F > Set_arity< F, 1 >::Type set_arity_1(const F& f);}{returns a functor equivalent to \ccc{f}, but which has arity one. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Set_arity}\\ \ccRefIdfierPage{CGAL::set_arity_0}\\ \ccRefIdfierPage{CGAL::set_arity_2}\\ \ccRefIdfierPage{CGAL::set_arity_3}\\ \ccRefIdfierPage{CGAL::set_arity_4}\\ \ccRefIdfierPage{CGAL::set_arity_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{set_arity_2} \ccDefinition The function \ccRefName\ is used to set the arity of a functor to two. The result is a functor that takes two arguments and calls the original functor with these arguments. \ccInclude{CGAL/functional.h} \ccThree{Set_arity< F, 2 >::Type}{set_arity_2}{} \ccFunction{template < class F > Set_arity< F, 2 >::Type set_arity_2(const F& f);}{returns a functor equivalent to \ccc{f}, but which has arity two. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Set_arity}\\ \ccRefIdfierPage{CGAL::set_arity_0}\\ \ccRefIdfierPage{CGAL::set_arity_1}\\ \ccRefIdfierPage{CGAL::set_arity_3}\\ \ccRefIdfierPage{CGAL::set_arity_4}\\ \ccRefIdfierPage{CGAL::set_arity_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{set_arity_3} \ccDefinition The function \ccRefName\ is used to set the arity of a functor to three. The result is a functor that takes three arguments and calls the original functor with these arguments. \ccInclude{CGAL/functional.h} \ccThree{Set_arity< F, 3 >::Type}{set_arity_3}{} \ccFunction{template < class F > Set_arity< F, 3 >::Type set_arity_3(const F& f);}{returns a functor equivalent to \ccc{f}, but which has arity three. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Set_arity}\\ \ccRefIdfierPage{CGAL::set_arity_0}\\ \ccRefIdfierPage{CGAL::set_arity_1}\\ \ccRefIdfierPage{CGAL::set_arity_2}\\ \ccRefIdfierPage{CGAL::set_arity_4}\\ \ccRefIdfierPage{CGAL::set_arity_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{set_arity_4} \ccDefinition The function \ccRefName\ is used to set the arity of a functor to four. The result is a functor that takes four arguments and calls the original functor with these arguments. \ccInclude{CGAL/functional.h} \ccThree{Set_arity< F, 4 >::Type}{set_arity_4}{} \ccFunction{template < class F > Set_arity< F, 4 >::Type set_arity_4(const F& f);}{returns a functor equivalent to \ccc{f}, but which has arity four. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Set_arity}\\ \ccRefIdfierPage{CGAL::set_arity_0}\\ \ccRefIdfierPage{CGAL::set_arity_1}\\ \ccRefIdfierPage{CGAL::set_arity_2}\\ \ccRefIdfierPage{CGAL::set_arity_3}\\ \ccRefIdfierPage{CGAL::set_arity_5}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} \begin{ccRefFunction}{set_arity_5} \ccDefinition The function \ccRefName\ is used to set the arity of a functor to five. The result is a functor that takes five arguments and calls the original functor with these arguments. \ccInclude{CGAL/functional.h} \ccThree{Set_arity< F, 5 >::Type}{set_arity_5}{} \ccFunction{template < class F > Set_arity< F, 5 >::Type set_arity_5(const F& f);}{returns a functor equivalent to \ccc{f}, but which has arity five. \ccRequire F is a model for \ccc{AdaptableFunctor}.} \ccSeeAlso \ccRefIdfierPage{CGAL::Set_arity}\\ \ccRefIdfierPage{CGAL::set_arity_0}\\ \ccRefIdfierPage{CGAL::set_arity_1}\\ \ccRefIdfierPage{CGAL::set_arity_2}\\ \ccRefIdfierPage{CGAL::set_arity_3}\\ \ccRefIdfierPage{CGAL::set_arity_4}\\ \ccRefConceptPage{AdaptableFunctor} \end{ccRefFunction} %% +=========================================================================+ \begin{ccRefFunctionObjectConcept}{Projection_object} \label{sectionProjectionFunctionObjects} \ccDefinition The concept \ccRefName\ is modeled after the STL concept \ccc{UnaryFunction}, but takes also care of (const) references. \ccTagFullDeclarations \ccNestedType{argument_type}{argument type.} \ccNestedType{result_type}{result type.} \ccCreationVariable{o} \ccCreation \ccConstructor{Projection_object();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type &) const;}{} \ccGlue \ccMethod{const result_type& operator()(const argument_type &) const;}{} \ccTagDefaults \ccHasModels \ccRefIdfierPage{CGAL::Identity}\\ \ccRefIdfierPage{CGAL::Dereference}\\ \ccRefIdfierPage{CGAL::Get_address}\\ \ccRefIdfierPage{CGAL::Cast_function_object}\\ \ccRefIdfierPage{CGAL::Project_vertex}\\ \ccRefIdfierPage{CGAL::Project_facet}\\ \ccRefIdfierPage{CGAL::Project_point}\\ \ccRefIdfierPage{CGAL::Project_normal}\\ \ccRefIdfierPage{CGAL::Project_plane}\\ \ccRefIdfierPage{CGAL::Project_next}\\ \ccRefIdfierPage{CGAL::Project_prev}\\ \ccRefIdfierPage{CGAL::Project_next_opposite}\\ \ccRefIdfierPage{CGAL::Project_opposite_prev} \end{ccRefFunctionObjectConcept} \begin{ccRefFunctionObjectClass}{Identity} \ccDefinition The class \ccRefName\ represents the identity function on \ccc{Value}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Value}.} \ccNestedType{result_type}{typedef to \ccc{Value}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Identity();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& x) const;}{returns \ccc{x}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& x) const;}{returns \ccc{x}.} \ccTagDefaults \end{ccRefFunctionObjectClass} %% \begin{ccRefFunctionObjectClass}{Compose} %% \ccDefinition The class \ccRefName\ composes two projections: %% $\ccc{Fct1} \circ \ccc{Fct2} \circ x \equiv \ccc{Fct1()( %% Fct2()(x))}$. %% \ccInclude{CGAL/function_objects.h} %% \ccHeading{Requirements} \ccc{Fct1} and \ccc{Fct2} are both models %% for \ccc{Projection_object}. %% \ccIsModel %% \ccRefConceptPage{Projection_object} %% \ccTagFullDeclarations %% \ccNestedType{argument_type}{typedef to \ccc{Fct2::argument_type}.} %% \ccNestedType{result_type}{typedef to \ccc{Fct1::result_type}.} %% \ccCreationVariable{o} %% \ccCreation %% \ccConstructor{Compose();}{default constructor.} %% \ccOperations %% \ccThree{const result_type&;;}{A}{} %% \ccMethod{result_type& operator()(argument_type& x) const;}{returns %% \ccc{Fct1()(Fct2()(x))}.} %% \ccGlue\ccMethod{const result_type& operator()(const argument_type& %% x) const;}{returns \ccc{Fct1()(Fct2()(x))}.} \ccTagDefaults %% \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Dereference} \ccDefinition The class \ccRefName\ dereferences a pointer (\ccc{operator*}). \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Value*}.} \ccNestedType{result_type}{typedef to \ccc{Value}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Dereference();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& x) const;}{returns \ccc{*x}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& x) const;}{returns \ccc{*x}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Get_address} \ccDefinition The class \ccRefName\ gets the address of an lvalue (\ccc{operator&}). \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Value}.} \ccNestedType{result_type}{typedef to \ccc{Value*}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Get_address();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& x) const;}{returns \ccc{&x}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& x) const;}{returns \ccc{&x}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Cast_function_object} \ccDefinition The class \ccRefName\ applies a C-style type cast to its argument. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Arg}.} \ccNestedType{result_type}{typedef to \ccc{Result}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Cast_function_object();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& x) const;}{returns \ccc{(Result)x}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& x) const;}{returns \ccc{(Result)x}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Project_vertex} \ccDefinition The class \ccRefName\ calls the member function \ccc{vertex()} on an instance of type \ccc{Node}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Node}.} \ccNestedType{result_type}{typedef to \ccc{Node::Vertex}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Project_vertex();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& n) const;}{returns \ccc{n.vertex()}.} \ccGlue \ccMethod{const result_type& operator()(const argument_type& n) const;}{returns \ccc{n.vertex()}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Project_facet} \ccDefinition The class \ccRefName\ calls the member function \ccc{facet()} on an instance of type \ccc{Node}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Node}.} \ccNestedType{result_type}{typedef to \ccc{Node::Facet}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Project_facet();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& n) const;}{returns \ccc{n.facet()}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& n) const;}{returns \ccc{n.facet()}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Project_point} \ccDefinition The class \ccRefName\ calls the member function \ccc{point()} on an instance of type \ccc{Node}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Node}.} \ccNestedType{result_type}{typedef to \ccc{Node::Point}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Project_point();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& n) const;}{returns \ccc{n.point()}.} \ccGlue \ccMethod{const result_type& operator()(const argument_type& n) const;}{returns \ccc{n.point()}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Project_normal} \ccDefinition The class \ccRefName\ calls the member function \ccc{normal()} on an instance of type \ccc{Node}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Node}.} \ccNestedType{result_type}{typedef to \ccc{Node::Normal}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Project_normal();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& n) const;}{returns \ccc{n.normal()}.} \ccGlue \ccMethod{const result_type& operator()(const argument_type& n) const;}{returns \ccc{n.normal()}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Project_plane} \ccDefinition The class \ccRefName\ calls the member function \ccc{plane()} on an instance of type \ccc{Node}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Node}.} \ccNestedType{result_type}{typedef to \ccc{Node::Plane}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Project_plane();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& n) const;}{returns \ccc{n.plane()}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& n) const;}{returns \ccc{n.plane()}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Project_next} \ccDefinition The class \ccRefName\ calls the member function \ccc{next()} on an instance of type \ccc{Node}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Node*}.} \ccNestedType{result_type}{typedef to \ccc{Node*}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Project_next();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& n) const;}{returns \ccc{n->next()}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& n) const;}{returns \ccc{n->next()}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Project_prev} \ccDefinition The class \ccRefName\ calls the member function \ccc{prev()} on an instance of type \ccc{Node}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Node*}.} \ccNestedType{result_type}{typedef to \ccc{Node*}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Project_prev();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& n) const;}{returns \ccc{n->prev()}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& n) const;}{returns \ccc{n->prev()}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Project_next_opposite} \ccDefinition The class \ccRefName\ calls the member functions \ccc{next()->opposite()} on an instance of type \ccc{Node}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Node*}.} \ccNestedType{result_type}{typedef to \ccc{Node*}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Project_next_opposite();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& n) const;}{returns \ccc{n->next()->opposite()}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& n) const;}{returns \ccc{n->next()->opposite()}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Project_opposite_prev} \ccDefinition The class \ccRefName\ calls the member functions \ccc{opposite()->prev()} on an instance of type \ccc{Node}. \ccInclude{CGAL/function_objects.h} \ccIsModel \ccRefConceptPage{Projection_object} \ccTagFullDeclarations \ccNestedType{argument_type}{typedef to \ccc{Node*}.} \ccNestedType{result_type}{typedef to \ccc{Node*}.} \ccCreationVariable{o} \ccCreation \ccConstructor{Project_opposite_prev();}{default constructor.} \ccOperations \ccThree{const result_type&;;}{A}{} \ccMethod{result_type& operator()(argument_type& n) const;}{returns \ccc{n->opposite()->prev()}.} \ccGlue\ccMethod{const result_type& operator()(const argument_type& n) const;}{returns \ccc{n->opposite()->prev()}.} \ccTagDefaults \end{ccRefFunctionObjectClass} %% +--------------------------------------------------------+ \begin{ccRefFunctionObjectClass}{Creator_1} \label{sectionCreatorFunctionObjects} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from one argument. \ccInclude{CGAL/function_objects.h} \ccHeading{Requirements} \ccc{Arg} is convertible to \ccc{Result}. \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of argument.} \ccNestedType{result_type}{type of object to create.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a) const;}{returns \ccc{result_type(a)}.} \ccTagDefaults \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_2} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from two arguments. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a corresponding constructor. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument1_type}{type of first argument.} \ccNestedType{argument2_type}{type of second argument.} \ccNestedType{result_type}{type of object to create.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type1 a1, argument_type2 a2) const;}{returns \ccc{result_type(a1, a2)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_3} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from three arguments. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a corresponding constructor. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument1_type}{type of first argument.} \ccNestedType{argument2_type}{type of second argument.} \ccNestedType{argument3_type}{type of third argument.} \ccNestedType{result_type}{type of object to create.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type1 a1, argument_type2 a2, argument_type3 a3) const;}{returns \ccc{result_type(a1, a2, a3)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_4} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from four arguments. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a corresponding constructor. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument1_type}{type of first argument.} \ccNestedType{argument2_type}{type of second argument.} \ccNestedType{argument3_type}{type of third argument.} \ccNestedType{argument4_type}{type of 4th argument.} \ccNestedType{result_type}{type of object to create.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type1 a1, argument_type2 a2, argument_type3 a3, argument_type4 a4) const;}{returns \ccc{result_type(a1, a2, a3, a4)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_5} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from five arguments. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a corresponding constructor. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument1_type}{type of first argument.} \ccNestedType{argument2_type}{type of second argument.} \ccNestedType{argument3_type}{type of third argument.} \ccNestedType{argument4_type}{type of 4th argument.} \ccNestedType{argument5_type}{type of 5th argument.} \ccNestedType{result_type}{type of object to create.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type1 a1, argument_type2 a2, argument_type3 a3, argument_type4 a4, argument_type5 a5) const;}{returns \ccc{result_type(a1, a2, a3, a4, a5)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_uniform_2} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from two arguments of the same type. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a constructor from two \ccc{Arg} arguments. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of arguments; typedef to \ccc{Arg}.} \ccNestedType{result_type}{type of object to create; typedef to \ccc{Result}.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a1, argument_type a2) const;}{returns \ccc{result_type(a1, a2)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_uniform_3} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from three arguments of the same type. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a constructor from three \ccc{Arg} arguments. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of arguments; typedef to \ccc{Arg}.} \ccNestedType{result_type}{type of object to create; typedef to \ccc{Result}.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a1, argument_type a2, argument_type a3) const;}{returns \ccc{result_type(a1, a2, a3)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_uniform_4} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from four arguments of the same type. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a constructor from four \ccc{Arg} arguments. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of arguments; typedef to \ccc{Arg}.} \ccNestedType{result_type}{type of object to create; typedef to \ccc{Result}.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a1, argument_type a2, argument_type a3, argument_type a4) const;}{returns \ccc{result_type(a1, a2, a3, a4)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_uniform_5} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from five arguments of the same type. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a constructor from five \ccc{Arg} arguments. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of arguments; typedef to \ccc{Arg}.} \ccNestedType{result_type}{type of object to create; typedef to \ccc{Result}.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a1, argument_type a2, argument_type a3, argument_type a4, argument_type a5) const;}{returns \ccc{result_type(a1, a2, a3, a4, a5)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_uniform_6} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from six arguments of the same type. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a constructor from six \ccc{Arg} arguments. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of arguments; typedef to \ccc{Arg}.} \ccNestedType{result_type}{type of object to create; typedef to \ccc{Result}.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a1, argument_type a2, argument_type a3, argument_type a4, argument_type a5, argument_type a6) const;}{returns \ccc{result_type(a1, a2, a3, a4, a5, a6)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_uniform_7} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from seven arguments of the same type. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a constructor from seven \ccc{Arg} arguments. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of arguments; typedef to \ccc{Arg}.} \ccNestedType{result_type}{type of object to create; typedef to \ccc{Result}.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a1, argument_type a2, argument_type a3, argument_type a4, argument_type a5, argument_type a6, argument_type a7) const;}{returns \ccc{result_type(a1, a2, a3, a4, a5, a6, a7)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_uniform_8} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from eight arguments of the same type. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a constructor from eight \ccc{Arg} arguments. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of arguments; typedef to \ccc{Arg}.} \ccNestedType{result_type}{type of object to create; typedef to \ccc{Result}.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a1, argument_type a2, argument_type a3, argument_type a4, argument_type a5, argument_type a6, argument_type a7, argument_type a8) const;}{returns \ccc{result_type(a1, a2, a3, a4, a5, a6, a7, a8)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_uniform_9} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from nine arguments of the same type. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a constructor from nine \ccc{Arg} arguments. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of arguments; typedef to \ccc{Arg}.} \ccNestedType{result_type}{type of object to create; typedef to \ccc{Result}.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a1, argument_type a2, argument_type a3, argument_type a4, argument_type a5, argument_type a6, argument_type a7, argument_type a8, argument_type a9) const;}{returns \ccc{result_type(a1, a2, a3, a4, a5, a6, a7, a8, a9)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} \begin{ccRefFunctionObjectClass}{Creator_uniform_d} \ccDefinition The concept \ccRefName\ defines types and operations for creating objects from two arguments of the same type. \ccInclude{CGAL/function_objects.h} \ccRequirements \ccc{Result} defines a constructor from three arguments: one \ccc{d} dimension and two \ccc{Arg} arguments. \def\ccLongParamLayout{\ccTrue} \ccTagFullDeclarations\ccCreationVariable{c} \ccNestedType{argument_type}{type of arguments; typedef to \ccc{Arg}.} \ccNestedType{result_type}{type of object to create; typedef to \ccc{Result}.} \ccThree{result_type;;}{operator()(argument_type a) const;;}{} \ccMethod{result_type operator()(argument_type a1, argument_type a2) const;}{returns \ccc{result_type(d, a1, a2)}.} \ccTagDefaults\def\ccLongParamLayout{\ccFalse} \end{ccRefFunctionObjectClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Twotuple} \ccDefinition The \ccRefName\ class stores a homogeneous (same type) pair of objects of type \ccc{T}. A \ccRefName\ is much like a container, in that it "owns" its elements. It is not actually a model of container, though, because it does not support the standard methods (such as iterators) for accessing the elements of a container. \ccInclude{CGAL/Twotuple.h} \ccRequirements \ccc{T} must be \ccc{Assignable}. %\ccSetThreeColumns{T*}{next_link ;}{} \ccThree{result_type;;}{operator()(argument a) ;;}{} \ccTypes \ccTypedef{typedef T value_type;}{} \ccHeading{Variables} \ccVariable{T e0;}{first element} \ccGlue \ccVariable{T e1;}{second element} \ccCreation \ccCreationVariable{t} \ccConstructor{Twotuple();}{introduces a \ccRefName\ using the default constructor of the elements.} \ccConstructor{Twotuple(T x, T y);}{constructs a \ccRefName\ such that \ccc{e0} is constructed from \ccc{x} and \ccc{e1} is constructed from \ccc{y}.} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Threetuple} \ccDefinition The \ccRefName\ class stores a homogeneous (same type) triple of objects of type \ccc{T}. A \ccRefName\ is much like a container, in that it "owns" its elements. It is not actually a model of container, though, because it does not support the standard methods (such as iterators) for accessing the elements of a container. \ccInclude{CGAL/Threetuple.h} \ccRequirements \ccc{T} must be \ccc{Assignable}. %\ccSetThreeColumns{T*}{next_link ;}{} \ccThree{result_type;;}{operator()(argument a) ;;}{} \ccTypes \ccTypedef{typedef T value_type;}{} \ccHeading{Variables} \ccVariable{T e0;}{first element} \ccGlue \ccVariable{T e1;}{second element} \ccGlue \ccVariable{T e2;}{third element} \ccCreation \ccCreationVariable{t} \ccConstructor{Threetuple();}{introduces a \ccRefName\ using the default constructor of the elements.} \ccConstructor{Threetuple(T x, T y, T z);}{constructs a \ccRefName\ such that \ccc{e0} is constructed from \ccc{x}, \ccc{e1} is constructed from \ccc{y} and \ccc{e2} is constructed from \ccc{z}.} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Fourtuple} \ccDefinition The \ccRefName\ class stores a homogeneous (same type) fourtuple of objects of type \ccc{T}. A \ccRefName\ is much like a container, in that it "owns" its elements. It is not actually a model of container, though, because it does not support the standard methods (such as iterators) for accessing the elements of a container. \ccInclude{CGAL/Fourtuple.h} \ccRequirements \ccc{T} must be \ccc{Assignable}. %\ccSetThreeColumns{T*}{next_link ;}{} \ccThree{result_type;;}{operator()(argument a) ;;}{} \ccTypes \ccTypedef{typedef T value_type;}{} \ccHeading{Variables} \ccVariable{T e0;}{first element} \ccGlue \ccVariable{T e1;}{second element} \ccGlue \ccVariable{T e2;}{third element} \ccGlue \ccVariable{T e3;}{fourth element} \ccCreation \ccCreationVariable{t} \ccConstructor{Fourtuple();}{introduces a \ccRefName\ using the default constructor of the elements.} \ccConstructor{Fourtuple(T x, T y, T z, T t);}{constructs a \ccRefName\ such that \ccc{e0} is constructed from \ccc{x}, \ccc{e1} from \ccc{y}, \ccc{e2} from \ccc{z} and \ccc{e3} from \ccc{t}.} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Sixtuple} \ccDefinition The \ccRefName\ class stores a homogeneous (same type) sixtuple of objects of type \ccc{T}. A \ccRefName\ is much like a container, in that it "owns" its elements. It is not actually a model of container, though, because it does not support the standard methods (such as iterators) for accessing the elements of a container. \ccInclude{CGAL/Sixtuple.h} \ccRequirements \ccc{T} must be \ccc{Assignable}. %\ccSetThreeColumns{T*}{next_link ;}{} \ccThree{result_type;;}{operator()(argument a) ;;}{} \ccTypes \ccTypedef{typedef T value_type;}{} \ccHeading{Variables} \ccVariable{T e0;}{first element} \ccGlue \ccVariable{T e1;}{second element} \ccGlue \ccVariable{T e2;}{third element} \ccGlue \ccVariable{T e3;}{fourth element} \ccGlue \ccVariable{T e4;}{fifth element} \ccGlue \ccVariable{T e5;}{sixth element} \ccCreation \ccCreationVariable{t} \ccConstructor{Sixtuple();}{introduces a \ccRefName\ using the default constructor of the elements.} \ccConstructor{Sixtuple(T x, T y, T z, T t, T u, T v);}{constructs a \ccRefName\ such that \ccc{e0} is constructed from \ccc{x}, \ccc{e1} from \ccc{y}, \ccc{e2} from \ccc{z}, \ccc{e3} from \ccc{t}, \ccc{e4} from \ccc{u} and \ccc{e5} from \ccc{v}.} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Triple} \ccDefinition The Triple class is an extension of \ccc{std::pair}. \ccRefName\ is a heterogeneous triple: it holds one object of type \ccc{T1}, one of type \ccc{T2}, and one of type \ccc{T3}. A \ccRefName\ is much like a container, in that it "owns" its elements. It is not actually a model of container, though, because it does not support the standard methods (such as iterators) for accessing the elements of a container. \ccInclude{CGAL/utility.h} \ccRequirements \ccc{T1}, \ccc{T2} and \ccc{T3} must be \ccc{Assignable}. Additional operations have additional requirements. %\ccSetThreeColumns{T*}{next_link ;}{} \ccThree{result_type;;}{operator()(argument a) ;;}{} \ccTypes \ccTypedef{typedef T1 first_type;}{} \ccGlue \ccTypedef{typedef T2 second_type;}{} \ccGlue \ccTypedef{typedef T3 third_type;}{} \ccHeading{Variables} \ccVariable{T1 first;}{first element} \ccGlue \ccVariable{T2 second;}{second element} \ccGlue \ccVariable{T3 third;}{third element} \ccCreation \ccCreationVariable{t} \ccConstructor{Triple();}{introduces a triple using the default constructor of the three elements.} \ccConstructor{Triple(T1 x, T2 y, T3 z);}{constructs a triple such that \ccc{first} is constructed from \ccc{x}, \ccc{second} is constructed from \ccc{y}, and \ccc{third} is constructed from \ccc{z}.} \ccConstructor{template Triple(U u, V v, W w);} {constructs a triple such that \ccc{first} is constructed from \ccc{u}, \ccc{second} is constructed from \ccc{v}, and \ccc{third} is constructed from \ccc{w}. \ccRequire Proper conversion operators exist from \ccc{U} to \ccc{T1}, \ccc{V} to \ccc{T2}, and \ccc{W} to \ccc{T3}.} \ccFunction{template bool operator<(Triple x, Triple y);} {The comparison operator. It uses lexicographic comparison: the return value is true if the first element of \ccc{x} is less than the first element of \ccc{y}, and false if the first element of \ccc{y} is less than the first element of \ccc{x}. If neither of these is the case, then it returns true if the second element of \ccc{x} is less than the second element of \ccc{y}, and false if the second element of \ccc{y} is less than the second element of \ccc{x}. If neither of these is the case, then it returns the result of comparing the third elements of \ccc{x} and \ccc{y}. This operator may only be used if \ccc{T1}, \ccc{T2} and \ccc{T3} define the comparison operator.} \ccFunction{template bool operator==(Triple x, Triple y);} {The equality operator. The return value is true if and only the first elements of \ccc{x} and \ccc{y} are equal, the second elements of \ccc{x} and \ccc{y} are equal, and the third elements of \ccc{x} and \ccc{y} are equal. This operator may only be used if \ccc{T1}, \ccc{T2} and \ccc{T3} define the equality operator.} \ccFunction{template Triple make_triple(T1 x, T2 y, T3 z);} {Equivalent to \ccStyle{Triple(x, y, z)}.} \end{ccRefClass} %% +--------------------------------------------------------+ \begin{ccRefClass}{Quadruple} \ccDefinition The Quadruple class is an extension of \ccc{std::pair}. \ccRefName\ is a heterogeneous quadruple: it holds one object of type \ccc{T1}, one of type \ccc{T2}, one of type \ccc{T3}, and one of type \ccc{T4}. A \ccRefName\ is much like a container, in that it ``owns'' its elements. It is not actually a model of container, though, because it does not support the standard methods (such as iterators) for accessing the elements of a container. \ccInclude{CGAL/utility.h} \ccRequirements \ccc{T1}, \ccc{T2}, \ccc{T3} and \ccc{T4} must be \ccc{Assignable}. Additional operations have additional requirements. %\ccSetThreeColumns{T*}{next_link ;}{} \ccThree{result_type;;}{operator()(argument a) ;;}{} \ccTypes \ccTypedef{typedef T1 first_type;}{} \ccGlue \ccTypedef{typedef T2 second_type;}{} \ccGlue \ccTypedef{typedef T3 third_type;}{} \ccGlue \ccTypedef{typedef T4 fourth_type;}{} \ccHeading{Variables} \ccVariable{T1 first;}{first element} \ccGlue \ccVariable{T2 second;}{second element} \ccGlue \ccVariable{T3 third;}{third element} \ccGlue \ccVariable{T4 fourth;}{fourth element} \ccCreation \ccCreationVariable{t} \ccConstructor{Quadruple();} {introduces a quadruple using the default constructor of the four elements.} \ccConstructor{Quadruple(T1 x, T2 y, T3 z, T4 w);} {constructs a quadruple such that \ccc{first} is constructed from \ccc{x}, \ccc{second} is constructed from \ccc{y}, \ccc{third} is constructed from \ccc{z}, and \ccc{fourth} is constructed from \ccc{w}.} \ccConstructor{template Quadruple(U u, V v, W w, X x);} {constructs a quadruple such that \ccc{first} is constructed from \ccc{u}, \ccc{second} is constructed from \ccc{v}, \ccc{third} is constructed from \ccc{w}, and \ccc{fourth} is constructed from \ccc{x}. \ccRequire Proper conversion operators exist from \ccc{U} to \ccc{T1}, \ccc{V} to \ccc{T2}, \ccc{W} to \ccc{T3}, and \ccc{X} to \ccc{T4}. } \ccFunction{template bool operator<(Quadruple x, Quadruple y);} {The comparison operator. It uses lexicographic comparison: the return value is true if the first element of \ccc{x} is less than the first element of \ccc{y}, and false if the first element of \ccc{y} is less than the first element of \ccc{x}. If neither of these is the case, then it returns true if the second element of \ccc{x} is less than the second element of \ccc{y}, and false if the second element of \ccc{y} is less than the second element of \ccc{x}. If neither of these is the case, then it returns true if the third element of \ccc{x} is less than the third element of \ccc{y}, and false if the third element of \ccc{y} is less than the third element of \ccc{x}. If neither of these is the case, then it returns the result of comparing the fourth elements of \ccc{x} and \ccc{y}. This operator may only be used if \ccc{T1}, \ccc{T2}, \ccc{T3}, and \ccc{T4} define the comparison operator.} \ccFunction{template bool operator==(Quadruple x, Quadruple y);} {The equality operator. The return value is true if and only the first elements of \ccc{x} and \ccc{y} are equal, the second elements of \ccc{x} and \ccc{y} are equal, the third elements of \ccc{x} and \ccc{y} are equal, and the fourth elements of \ccc{x} and \ccc{y} are equal. This operator may only be used if \ccc{T1}, \ccc{T2}, \ccc{T3}, and \ccc{T4} define the equality operator.} \ccFunction{template Quadruple make_quadruple(T1 x, T2 y, T3 z, T4 w);} {Equivalent to \ccStyle{Quadruple(x, y, z, w)}.} \end{ccRefClass} %% +=========================================================================+ \begin{ccRefClass}{Boolean_tag} \ccDefinition Depending on \ccc{bool value} the class \ccRefName\ indicates that something is \ccc{true} or \ccc{false} respectively. \ccInclude{CGAL/tags.h} \ccConstants \ccVariable{static const bool value;}{} \ccSeeAlso \ccRefIdfierPage{CGAL::Tag_true} \\ \ccRefIdfierPage{CGAL::Tag_false} \end{ccRefClass} \begin{ccRefClass}{Tag_true} \ccDefinition The typedef \ccRefName\ is \ccc{Boolean_tag}. It is used to indicate, for example, that a certain feature is available in a class. \ccInclude{CGAL/tags.h} \ccVariable{static const bool value;}{ is \ccc{true} } \ccSeeAlso \ccRefIdfierPage{CGAL::Boolean_tag} \\ \ccRefIdfierPage{CGAL::Tag_false} \end{ccRefClass} \begin{ccRefClass}{Tag_false} \ccDefinition The typedef \ccRefName\ is \ccc{Boolean_tag}. It is used to indicate, for example, that a certain feature is not available in a class. \ccInclude{CGAL/tags.h} \ccVariable{static const bool value;}{ is \ccc{false} } \ccSeeAlso \ccRefIdfierPage{CGAL::Boolean_tag} \\ \ccRefIdfierPage{CGAL::Tag_true} \end{ccRefClass} \input{STL_Extension_ref/Null_functor.tex} \input{STL_Extension_ref/Null_tag.tex} %% +--------------------------------------------------------+ \ccParDims %% EOF