\ccRefChapter{2D Circular Kernel} \ccChapterAuthor{Sylvain Pion \and Monique Teillaud} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Geometric Concepts} \ccRefConceptPage{CircularKernel} \ccRefConceptPage{LinearKernel} \subsubsection*{Functors} \ccRefConceptPage{CircularKernel::ConstructLine_2}\\ \ccRefConceptPage{CircularKernel::ConstructCircle_2}\\ \ccRefConceptPage{CircularKernel::ConstructCircularArcPoint_2}\\ \ccRefConceptPage{CircularKernel::ConstructLineArc_2}\\ \ccRefConceptPage{CircularKernel::ConstructCircularArc_2} \ccRefConceptPage{CircularKernel::ConstructCircularMinVertex_2}\\ \ccRefConceptPage{CircularKernel::ConstructCircularMaxVertex_2}\\ \ccRefConceptPage{CircularKernel::ConstructCircularSourceVertex_2}\\ \ccRefConceptPage{CircularKernel::ConstructCircularTargetVertex_2} %\footnote{technical remark: the previous functors have a different name %``Circular'' because the operators() don't have the same return type %as the existing CGAL functors... it would be nice to find a way to avoid %this, but I don't know any technique for this.} \ccRefConceptPage{CircularKernel::ConstructBbox_2} \ccRefConceptPage{CircularKernel::CompareX_2}\\ \ccRefConceptPage{CircularKernel::CompareY_2}\\ \ccRefConceptPage{CircularKernel::CompareXY_2} \ccRefConceptPage{CircularKernel::Equal_2} \ccRefConceptPage{CircularKernel::CompareYatX_2}\\ \ccRefConceptPage{CircularKernel::CompareYtoRight_2} \ccRefConceptPage{CircularKernel::HasOn_2} \ccRefConceptPage{CircularKernel::DoOverlap_2} \ccRefConceptPage{CircularKernel::InXRange_2} %\ccRefConceptPage{CircularKernel::InYRange_2} \ccRefConceptPage{CircularKernel::IsVertical_2} \ccRefConceptPage{CircularKernel::IsXMonotone_2}\\ \ccRefConceptPage{CircularKernel::IsYMonotone_2} \ccRefConceptPage{CircularKernel::MakeXMonotone_2} \ccRefConceptPage{CircularKernel::Intersect_2} \ccRefConceptPage{CircularKernel::Split_2} \ccRefConceptPage{CircularKernel::GetEquation} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Algebraic Concepts} \ccRefConceptPage{AlgebraicKernelForCircles} %\ccRefConceptPage{AlgebraicKernelForCircles::Polynomial_1_2}\footnote{General %remark about the suffix \_d\_v: \_d stands %for the degree of the polynomials and the algebraic numbers, and %\_v stands for the number of variables, which is analogous to the %dimension for CGAL geometric objects.}\\ %\ccRefConceptPage{AlgebraicKernelForCircles::PolynomialForCircles_2_2}\\ %\ccRefConceptPage{RootOf_2}\\ %\ccRefConceptPage{AlgebraicKernelForCircles::RootForCircles_2_2} \subsubsection*{Functors} % \footnote{no \_2 (or \_2\_2) for functors ????????? problem of compatibility % with CK and the current kernel. On the other hand, allows to have only % one functor for several types of arguments} \ccRefConceptPage{AlgebraicKernelForCircles::ConstructPolynomial_1_2}\\ \ccRefConceptPage{AlgebraicKernelForCircles::ConstructPolynomialForCircles_2_2} \ccRefConceptPage{AlgebraicKernelForCircles::CompareX}\\ \ccRefConceptPage{AlgebraicKernelForCircles::CompareY}\\ \ccRefConceptPage{AlgebraicKernelForCircles::CompareXY} \ccRefConceptPage{AlgebraicKernelForCircles::SignAt} \ccRefConceptPage{AlgebraicKernelForCircles::XCriticalPoints}\\ \ccRefConceptPage{AlgebraicKernelForCircles::YCriticalPoints} \ccRefConceptPage{AlgebraicKernelForCircles::Solve} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Geometric Kernels and Classes} \subsubsection*{Kernels} \ccRefIdfierPage{CGAL::Circular_kernel_2} \\ \ccRefIdfierPage{CGAL::Exact_circular_kernel_2} %\ccRefIdfierPage{CGAL::Lazy_curved_kernel}%\\ %\ccRefIdfierPage{CGAL::Filtered_hexagon_curved_kernel}\\ %\ccRefIdfierPage{CGAL::Filtered_bbox_curved_kernel} \subsubsection*{Points} \ccRefIdfierPage{CGAL::Circular_arc_point_2} \subsubsection*{Arcs} \ccRefIdfierPage{CGAL::Circular_arc_2}\\ \ccRefIdfierPage{CGAL::Line_arc_2} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Algebraic Kernel and Classes} \subsubsection*{Kernel} \ccRefIdfierPage{CGAL::Algebraic_kernel_for_circles_2_2} \subsubsection*{Polynomials} \ccRefIdfierPage{CGAL::Polynomial_1_2}\\ \ccRefIdfierPage{CGAL::Polynomial_for_circles_2_2} \subsubsection*{Roots of Polynomials} \ccRefIdfierPage{CGAL::Root_of_2}\\ \ccRefIdfierPage{CGAL::Root_for_circles_2_2} \ccRefIdfierPage{CGAL::Root_of_traits_2} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\section{Geometric global functions} % \subsubsection*{Predicates} %\ccRefIdfierPage{CGAL::compare_x}\\ %\ccRefIdfierPage{CGAL::compare_y}\\ %\ccRefIdfierPage{CGAL::compare_xy} %%\ccRefIdfierPage{CGAL::compare_y_at_x}\\ %%\ccRefIdfierPage{CGAL::compare_y_to_right} % \subsubsection*{Constructions} %%\ccRefIdfierPage{CGAL::make_x_monotone}\\ %%\ccRefIdfierPage{CGAL::intersect} %\ccRefIdfierPage{CGAL::make_root_of_2} % \subsubsection*{Accessors} %\ccRefIdfierPage{CGAL::get_equation} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Traits Classes for \cgal\ Arrangements} \ccRefIdfierPage{CGAL::Arr_circular_arc_traits}\\ \ccRefIdfierPage{CGAL::Arr_line_arc_traits}\\ \ccRefIdfierPage{CGAL::Arr_circular_line_arc_traits}