\begin{ccRefFunctionObjectConcept}{CircularKernel::MakeXMonotone_2} \ccDefinition Splitting curves into monotone pieces. \ccCreationVariable{fo} A model \ccVar\ of this type must provide: \ccMemberFunction{template < class OutputIterator > OutputIterator operator()(const CircularKernel::Circular_arc_2 &ca, OutputIterator oit);} {Splits the arc \ccc{ca} into monotone arcs that are returned through the output iterator.} For the sake of completeness, the \ccc{operator()} must also be defined for a \ccc{Line_arc_2}. In this case, the input line arc itself is the only arc returned through the \ccc{OutputIterator}. \ccHasModels \ccc{Circular_kernel_2::Make_x_monotone_2;} \ccSeeAlso \ccRefIdfierPage{CGAL::make_x_monotone} \end{ccRefFunctionObjectConcept} \begin{ccRefFunctionObjectConcept}{CircularKernel::Intersect_2} \ccDefinition To compute intersections of objects. \ccRefines \ccc{Kernel::Intersect_2} \ccCreationVariable{fo} A model \ccVar\ of this type must provide: \ccMemberFunction{template < class OutputIterator > OutputIterator operator()(const CircularKernel::Line_arc_2 &l, const Type &c, OutputIterator points);} {Copies in the output iterators the intersection points between the two objects, sorted lexicographically. \ccc{points} iterates on elements of type \ccc{std::pair}, where the integer is the multiplicity of the corresponding intersection point between \ccc{l} and \ccc{c}. } and \ccMemberFunction{template < class OutputIterator > OutputIterator operator()(const Type &c, const CircularKernel::Line_arc_2 &l);} {same} where \ccc{Type} is either \ccc{CircularKernel::Circle_2} or \ccc{CircularKernel::Circular_arc_2}. \ccMemberFunction{template < class OutputIteratorPoints, class OutputIteratorArcs > std::pair< OutputIteratorPoints, OutputIteratorArcs > operator()(const Type1 &obj1, const Type2 &obj2, OutputIteratorPoints points, OutputIteratorArcs arcs);} {Copies in the output iterators the intersections between the two objects, sorted lexicographically. \ccc{points} iterates on elements of type \ccc{std::pair}, where the integer is the multiplicity of the corresponding intersection point between \ccc{obj1} and \ccc{obj2}, and \ccc{arcs} iterates on elements of type \ccc{CircularKernel::Circular_arc_2} %(or %\ccc{CircularKernel::Circle_2} in the special case of two equal input circles) that are arcs on which \ccc{obj1} and \ccc{obj2} overlap.} where \ccc{Type1} and \ccc{Type2} can both be either \ccc{CircularKernel::Circle_2} or \ccc{CircularKernel::Circular_arc_2}. \ccHasModels \ccc{Circular_kernel_2::Intersect_2;} \ccSeeAlso \ccRefIdfierPage{CGAL::intersect} \end{ccRefFunctionObjectConcept} \begin{ccRefFunctionObjectConcept}{CircularKernel::Split_2} \ccDefinition To split curves at a given point. \ccCreationVariable{fo} A model \ccVar\ of this type must provide: \ccMemberFunction{void operator() (const CircularKernel::Circular_arc_2 &a, const CircularKernel::Circular_arc_point_2 &p, CircularKernel::Circular_arc_2 &a1, CircularKernel::Circular_arc_2 &a2);} {Splits arc $a$ at point $p$, which creates arcs $a1$ and $a2$. \ccPrecond{$a$ is $x$-monotone, and $p$ lies on $a$.}} \ccMemberFunction{void operator() (const CircularKernel::Line_arc_2 &l, const CircularKernel::Circular_arc_point_2 &p, CircularKernel::Line_arc_2 &l1, CircularKernel::Line_arc_2 &l2);} {Same for a line arc.} \ccHasModels \ccc{Circular_kernel_2::Split_2} \ccSeeAlso \ccRefIdfierPage{CGAL::split} \end{ccRefFunctionObjectConcept}