\begin{ccRefConcept}{Modularizable} \ccDefinition An algebraic structure is called \ccRefName, if there is a suitable mapping into an algebraic structure which is based on the type \ccc{CGAL::Residue}. For scalar types, e.g. Integers, this mapping is just the canonical homomorphism into the type \ccc{CGAL::Residue}. For compound types, e.g. Polynomials, the mapping is applied to the coefficients of the compound type. The mapping is provided via \ccc{CGAL::Modular_traits}, being a model of \ccc{ModularTraits}. \ccHasModels \ccRefIdfierPage{int}\\ \ccRefIdfierPage{long}\\ \ccRefIdfierPage{CORE::BigInt}\\ \ccRefIdfierPage{CORE::BigRat}\\ \ccRefIdfierPage{CGAL::Gmpz}\\ \ccRefIdfierPage{CGAL::Gmpq}\\ \ccRefIdfierPage{leda::integer}\\ \ccRefIdfierPage{leda::rational}\\ \ccRefIdfierPage{mpz_class}\\ \ccRefIdfierPage{mpq_class}\\ \ccRefIdfierPage{CGAL::Quotient}, depends on template argument.\\ \ccRefIdfierPage{CGAL::Lazy_exact_nt}, depends on template argument.\\ \ccRefIdfierPage{CGAL::Sqrt_extension}, depends on template arguments.\\ \ccRefIdfierPage{CGAL::Polynomial}, depends on template argument.\\ \ccSeeAlso \ccRefIdfierPage{CGAL::Residue}\\ \ccRefIdfierPage{CGAL::Modular_traits}\\ \end{ccRefConcept}