// Copyright (c) 1999 Utrecht University (The Netherlands), // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $Source$ // $Revision$ $Date$ // $Name$ // // Author(s) : Stefan Schirra #ifndef CGAL_HOMOGENEOUS_VECTOR_2_h #define CGAL_HOMOGENEOUS_VECTOR_2_h #include #include CGAL_BEGIN_NAMESPACE template < class R_ > class VectorH2 : public R_::template Handle >::type { typedef typename R_::FT FT; typedef typename R_::RT RT; typedef typename R_::Point_2 Point_2; typedef typename R_::Segment_2 Segment_2; typedef typename R_::Ray_2 Ray_2; typedef typename R_::Line_2 Line_2; typedef typename R_::Direction_2 Direction_2; typedef typename R_::Vector_2 Vector_2; typedef typename R_::Aff_transformation_2 Aff_transformation_2; typedef Threetuple rep; typedef typename R_::template Handle::type base; const base& Base() const { return *this; } base& Base() { return *this; } public: typedef R_ R; VectorH2() {} VectorH2(const Point_2& a, const Point_2& b) : base (b-a) {} VectorH2(const Segment_2& s) : base (s.to_vector()) {} VectorH2(const Ray_2& r) : base (r.to_vector()) {} VectorH2(const Line_2& l) : base (l.to_vector()) {} VectorH2(const Null_vector &) : base (RT(0), RT(0), RT(1)) {} VectorH2(const RT& x, const RT& y) : base (x, y, RT(1)) {} VectorH2(const RT& x, const RT& y, const RT& w ) { if ( w >= RT(0) ) Base() = rep( x, y, w); else Base() = rep(-x, -y, -w); } bool operator==( const VectorH2& v) const; bool operator!=( const VectorH2& v) const; bool operator==( const Null_vector&) const; bool operator!=( const Null_vector& v) const; const RT & hx() const { return get(Base()).e0; }; const RT & hy() const { return get(Base()).e1; }; const RT & hw() const { return get(Base()).e2; }; FT x() const { return FT(hx()) / FT(hw()); }; FT y() const { return FT(hy()) / FT(hw()); }; FT cartesian(int i) const; const RT & homogeneous(int i) const; FT operator[](int i) const; int dimension() const; Direction_2 direction() const; Vector_2 transform(const Aff_transformation_2& t ) const; Vector_2 perpendicular(const Orientation& o ) const; Vector_2 operator+(const VectorH2 &v) const; Vector_2 operator-(const VectorH2 &v) const; FT operator*(const VectorH2 &v) const; Vector_2 operator-() const; Vector_2 opposite() const; Vector_2 operator*(const RT &f) const; Vector_2 operator*(const FT &f) const; FT squared_length() const; Vector_2 operator/(const RT &f) const; Vector_2 operator/(const FT &f) const; // undocumented: VectorH2(const Direction_2 & dir) : base ( dir) {} VectorH2(const Point_2 & p) : base ( p) {} }; template < class R > inline bool VectorH2::operator==( const Null_vector&) const { return (hx() == RT(0)) && (hy() == RT(0)); } template < class R > inline bool VectorH2::operator!=( const Null_vector& v) const { return !(*this == v); } template < class R > CGAL_KERNEL_INLINE bool VectorH2::operator==( const VectorH2& v) const { return ( (hx() * v.hw() == v.hx() * hw() ) &&(hy() * v.hw() == v.hy() * hw() ) ); } template < class R > inline bool VectorH2::operator!=( const VectorH2& v) const { return !(*this == v); } /* XXX */ template < class R > CGAL_KERNEL_INLINE typename VectorH2::FT VectorH2::cartesian(int i) const { CGAL_kernel_precondition( (i==0 || i==1) ); if (i==0) return x(); return y(); } template < class R > CGAL_KERNEL_INLINE const typename VectorH2::RT & VectorH2::homogeneous(int i) const { CGAL_kernel_precondition( (i>=0) && (i<=2) ); if (i==0) return hx(); if (i==1) return hy(); return hw(); } template < class R > inline typename VectorH2::FT VectorH2::operator[](int i) const { return cartesian(i); } template < class R > inline int VectorH2::dimension() const { return 2; } template < class R > CGAL_KERNEL_INLINE typename VectorH2::Direction_2 VectorH2::direction() const { return Direction_2(*this); } template < class R > inline typename VectorH2::Vector_2 VectorH2::operator-() const { return VectorH2(- hx(), - hy(), hw() ); } template < class R > inline typename VectorH2::Vector_2 VectorH2::opposite() const { return VectorH2(- hx(), - hy(), hw() ); } template CGAL_KERNEL_INLINE typename VectorH2::Vector_2 VectorH2::operator+(const VectorH2& v) const { return VectorH2( hx()*v.hw() + v.hx()*hw(), hy()*v.hw() + v.hy()*hw(), hw()*v.hw() ); } template CGAL_KERNEL_INLINE typename VectorH2::Vector_2 VectorH2::operator-(const VectorH2& v) const { return VectorH2( hx()*v.hw() - v.hx()*hw(), hy()*v.hw() - v.hy()*hw(), hw()*v.hw() ); } template CGAL_KERNEL_INLINE typename VectorH2::FT VectorH2::operator*(const VectorH2& v) const { typedef typename R::RT RT; typedef typename R::FT FT; return FT( RT(hx()*v.hx() + hy()*v.hy()) ) / FT( RT(hw()*v.hw() ) ); } template CGAL_KERNEL_INLINE typename VectorH2::FT VectorH2::squared_length() const { typedef typename R::FT FT; return FT( CGAL_NTS square(hx()) + CGAL_NTS square(hy()) ) / FT( CGAL_NTS square(hw()) ); } template CGAL_KERNEL_INLINE typename VectorH2::Vector_2 VectorH2::operator/(const typename VectorH2::RT& f) const { return VectorH2( hx(), hy(), hw()*f ); } template CGAL_KERNEL_INLINE typename VectorH2::Vector_2 VectorH2::operator/(const typename VectorH2::FT& f) const { return VectorH2( hx()*f.denominator(), hy()*f.denominator(), hw()*f.numerator() ); } template CGAL_KERNEL_INLINE typename VectorH2::Vector_2 VectorH2::operator*(const typename VectorH2::RT& f) const { return VectorH2( hx()*f, hy()*f, hw() ); } template CGAL_KERNEL_INLINE typename VectorH2::Vector_2 VectorH2::operator*(const typename VectorH2::FT& f) const { return VectorH2( hx()*f.numerator(), hy()*f.numerator(), hw()*f.denominator() ); } template CGAL_KERNEL_INLINE typename R::Vector_2 operator*(const typename R::RT& f, const VectorH2& v) { return VectorH2( v.hx()*f, v.hy()*f, v.hw() ); } template inline typename R::Point_2 operator+(const Origin&, const VectorH2& v) { return typename R::Point_2(v.hx(), v.hy(), v.hw()); } template inline typename R::Point_2 operator-(const Origin&, const VectorH2& v) { return typename R::Point_2(-v.hx(), -v.hy(), v.hw()); } template inline typename R::Vector_2 operator-(const PointH2& p, const Origin&) { return typename R::Vector_2(p.hx(), p.hy(), p.hw()); } template inline typename R::Vector_2 operator-(const Origin&, const PointH2& p) { return typename R::Vector_2(-p.hx(), -p.hy(), p.hw()); } template CGAL_KERNEL_INLINE typename R::Point_2 operator+(const PointH2& p, const VectorH2& v) { return typename R::Point_2(p.hx()*v.hw() + v.hx()*p.hw(), p.hy()*v.hw() + v.hy()*p.hw(), p.hw()*v.hw() ); } template CGAL_KERNEL_INLINE typename R::Point_2 operator-(const PointH2& p, const VectorH2& v) { return typename R::Point_2(p.hx()*v.hw() - v.hx()*p.hw(), p.hy()*v.hw() - v.hy()*p.hw(), p.hw()*v.hw() ); } template CGAL_KERNEL_INLINE typename R::Vector_2 operator-(const PointH2& p, const PointH2& q) { return typename R::Vector_2(p.hx()*q.hw() - q.hx()*p.hw(), p.hy()*q.hw() - q.hy()*p.hw(), p.hw()*q.hw() ); } template < class R > CGAL_KERNEL_INLINE typename R::Vector_2 VectorH2::perpendicular(const Orientation& o) const { CGAL_kernel_precondition(o != COLLINEAR); if (o == COUNTERCLOCKWISE) return typename R::Vector_2(-hy(), hx(), hw()); else return typename R::Vector_2(hy(), -hx(), hw()); } template < class R > inline typename R::Vector_2 VectorH2:: transform(const typename VectorH2::Aff_transformation_2& t) const { return t.transform(*this); } #ifndef CGAL_NO_OSTREAM_INSERT_VECTORH2 template < class R > std::ostream & operator<<(std::ostream &os, const VectorH2 &p) { switch(os.iword(IO::mode)) { case IO::ASCII : return os << p.hx() << ' ' << p.hy() << ' ' << p.hw(); case IO::BINARY : write(os, p.hx()); write(os, p.hy()); write(os, p.hw()); return os; default: return os << "VectorH2(" << p.hx() << ", " << p.hy() << ", " << p.hw() << ')'; } } #endif // CGAL_NO_OSTREAM_INSERT_VECTORH2 #ifndef CGAL_NO_ISTREAM_EXTRACT_VECTORH2 template < class R > std::istream & operator>>(std::istream &is, VectorH2 &p) { typename R::RT hx, hy, hw; switch(is.iword(IO::mode)) { case IO::ASCII : is >> hx >> hy >> hw; break; case IO::BINARY : read(is, hx); read(is, hy); read(is, hw); break; default: std::cerr << "" << std::endl; std::cerr << "Stream must be in ascii or binary mode" << std::endl; break; } p = VectorH2(hx, hy, hw); return is; } #endif // CGAL_NO_ISTREAM_EXTRACT_VECTORH2 CGAL_END_NAMESPACE #endif // CGAL_HOMOGENEOUS_VECTOR_2_h