\begin{ccRefConcept}{PolynomialTraits_d::PseudoDivision} \ccDefinition This \ccc{AdaptableFunctor} computes the so called {\em pseudo division} of to polynomials $f$ and $g$. Given $f$ and $g != 0$, compute quotient $q$ and remainder $r$ such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$, where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$ \ccRefines \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef void result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d third_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d fourth_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Coefficient fifth_argument_type;}{}\ccGlue \ccTypedef{typedef int sixth_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type f, second_argument_type g, third_argument_type q, fourth_argument_type r, fifth_argument_type D);}{ Computes the pseudo division with respect to the outermost variable $x_d$.} \begin{ccAdvanced} \ccMethod{result_type operator()(first_argument_type f, second_argument_type g, third_argument_type q, fourth_argument_type r, fifth_argument_type D, int i);}{ Computes the pseudo division with respect to variable $x_i$. \ccPrecond $0