\begin{ccRefConcept}{PolynomialTraits_d::TranslateHomogeneous} \ccDefinition This \ccc{AdaptableFunctor} translate a \ccc{PolynomialTraits_d::Polynomial_d} with respect to one variable. \ccRefines \ccc{AdaptableFunctor} \ccTypes \ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{} \ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Coefficient second_argument_type;}{}\ccGlue \ccTypedef{typedef PolynomialTraits_d::Coefficient third_argument_type;}{}\ccGlue \ccTypedef{typedef int fourth_argument_type;}{} \ccOperations \ccMethod{result_type operator()(first_argument_type p, second_argument_type a, third_argument_type b);} { return $b^{degree}\cdot p(x+a)/b$, with respect to the outermost variable. } \ccMethod{result_type operator()(first_argument_type p, second_argument_type a, third_argument_type b, fourth_argument_type i);} { return $b^{degree}\cdot p(x+a)/b$, with respect to variable $x_i$. \ccPrecond $0