// Copyright (c) 2008 INRIA Sophia-Antipolis (France), ETHZ (Suisse). // Copyrigth (c) 2009 GeometryFactory (France) // All rights reserved. // // This file is part of CGAL (www.cgal.org); you may redistribute it under // the terms of the Q Public License version 1.0. // See the file LICENSE.QPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Camille Wormser, Pierre Alliez, Laurent Rineau, Stephane Tayeb #ifndef CGAL_AABB_TREE_H #define CGAL_AABB_TREE_H #include #include #include #include namespace CGAL { /** * @class AABB_tree * * */ template class AABB_tree { public: /// types typedef typename AABBTraits::FT FT; typedef typename AABBTraits::Point Point; typedef typename AABBTraits::Primitive Primitive; typedef typename AABBTraits::Size_type Size_type; typedef typename AABBTraits::Bounding_box Bounding_box; typedef typename AABBTraits::Point_and_primitive Point_and_primitive; private: // internal KD-tree used to accelerate the distance queries typedef AABB_search_tree Search_tree; public: /** * @brief Constructor * @param first iterator over first primitive to insert * @param beyond past-the-end iterator * * Builds the datastructure. Type ConstPrimitiveIterator can be any const * iterator on a container of Primitive::id_type such that Primitive has * a constructor taking a ConstPrimitiveIterator as argument. */ template AABB_tree(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond); /// Clears the current tree and rebuilds the datastructure. /// Type ConstPrimitiveIterator can be any const iterator on /// a container of Primitive::id_type such that Primitive has /// a constructor taking a ConstPrimitiveIterator as argument. /// Returns true if the memory allocation was successful. template bool rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond); /// Non virtual destructor ~AABB_tree() { clear(); } /// Clears the tree void clear() { // clear AABB tree m_data.clear(); delete [] m_p_root; m_p_root = NULL; clear_search_tree(); } // bbox and size Bounding_box bbox() const { return m_p_root->bbox(); } Size_type size() const { return m_data.size(); } bool empty() const { return m_data.empty(); } /// Construct internal search tree with a given point set // returns true iff successful memory allocation template bool construct_search_tree(ConstPointIterator first, ConstPointIterator beyond); /// Construct internal search tree from /// a point set taken on the internal primitives // returns true iff successful memory allocation bool construct_search_tree(); template bool do_intersect(const Query& query) const; template Size_type number_of_intersected_primitives(const Query& query) const; // all intersections template OutputIterator all_intersected_primitives(const Query& query, OutputIterator out) const; template OutputIterator all_intersections(const Query& query, OutputIterator out) const; // any intersection template boost::optional any_intersected_primitive(const Query& query) const; template boost::optional any_intersection(const Query& query) const; // distance queries FT squared_distance(const Point& query) const; FT squared_distance(const Point& query, const Point& hint) const; Point closest_point(const Point& query); Point closest_point(const Point& query, const Point& hint); Primitive closest_primitive(const Point& query) const; Primitive closest_primitive(const Point& query, const Point& hint) const; Point_and_primitive closest_point_and_primitive(const Point& query) const; Point_and_primitive closest_point_and_primitive(const Point& query, const Point& hint) const; private: void clear_search_tree() { // clear KD tree delete m_p_search_tree; m_p_search_tree = NULL; m_search_tree_constructed = false; } /// generic traversal of the tree template void traversal(const Query& query, Traversal_traits& traits) const { if(!empty()) m_p_root->template traversal(query, traits, m_data.size()); else std::cerr << "AABB tree traversal with empty tree" << std::endl; } ////////////////////////////////////////////// private: typedef AABB_node Node; typedef typename AABBTraits::Sphere Sphere; //------------------------------------------------------- // Traits classes for traversal computation //------------------------------------------------------- /** * @class First_intersection_traits */ template class First_intersection_traits { public: typedef typename boost::optional Result; public: First_intersection_traits() : m_is_found(false) {} bool go_further() const { return !m_is_found; } void intersection(const Query& query, const Primitive& primitive) { Point_and_primitive pp; m_is_found = AABBTraits().intersection(query, primitive, pp); if(m_is_found) m_result = Result(pp); } bool do_intersect(const Query& query, const Node& node) const { return AABBTraits().do_intersect(query, node.bbox()); } Result result() const { return m_result; } bool is_intersection_found() const { return m_is_found; } private: bool m_is_found; Result m_result; }; /** * @class Counting_traits */ template class Counting_traits { public: Counting_traits() : m_nb_intersections(0) {} bool go_further() const { return true; } // TOCHECK void intersection(const Query& query, const Primitive& primitive) { if( AABBTraits().do_intersect(query, primitive) ) { ++m_nb_intersections; } } bool do_intersect(const Query& query, const Node& node) const { return AABBTraits().do_intersect(query, node.bbox()); } Size_type number_of_intersections() const { return m_nb_intersections; } private: Size_type m_nb_intersections; }; /** * @class Listing_intersection_traits */ template class Listing_intersection_traits { public: Listing_intersection_traits(Output_iterator out_it) : m_intersection() , m_out_it(out_it) {} bool go_further() const { return true; } void intersection(const Query& query, const Primitive& primitive) { if( AABBTraits().intersection(query, primitive, m_intersection) ) { *m_out_it++ = m_intersection; } } bool do_intersect(const Query& query, const Node& node) const { return AABBTraits().do_intersect(query, node.bbox()); } private: Output_iterator m_out_it; Point_and_primitive m_intersection; }; /** * @class Listing_primitive_traits */ template class Listing_primitive_traits { public: Listing_primitive_traits(Output_iterator out_it) : m_out_it(out_it) {} bool go_further() const { return true; } void intersection(const Query& query, const Primitive& primitive) { if( AABBTraits().do_intersect(query, primitive) ) { *m_out_it++ = primitive; } } bool do_intersect(const Query& query, const Node& node) const { return AABBTraits().do_intersect(query, node.bbox()); } private: Output_iterator m_out_it; }; /** * @class First_primitive_traits */ template class First_primitive_traits { public: First_primitive_traits() : m_is_found(false) , m_result() {} bool go_further() const { return !m_is_found; } void intersection(const Query& query, const Primitive& primitive) { if( AABBTraits().do_intersect(query, primitive) ) { m_result = boost::optional(primitive); m_is_found = true; } } bool do_intersect(const Query& query, const Node& node) const { return AABBTraits().do_intersect(query, node.bbox()); } boost::optional result() const { return m_result; } bool is_intersection_found() const { return m_is_found; } private: bool m_is_found; boost::optional m_result; }; /** * @class Projection_traits */ class Distance_traits { public: Distance_traits(const Point& query, const Point& hint, const Primitive& hint_primitive) : m_closest_point(hint), m_closest_primitive(hint_primitive), m_sphere(AABBTraits().sphere(query,hint)) {} bool go_further() const { return true; } void intersection(const Point& query, const Primitive& primitive) { // update m_closest_primitive if needed Point new_closest_point = AABBTraits().closest_point(query, primitive, m_closest_point) if(new_closest_point != ) { m_closest_primitive = primitive; m_closest_point = new_closest_point; } m_sphere = AABBTraits().sphere(query, m_closest_point); } bool do_intersect(const Point& query, const Node& node) const { return AABBTraits().do_intersect(m_sphere, node.bbox()); } Point closest_point() const { return m_closest_point; } Primitive closest_primitive() const { return m_closest_primitive; } private: Sphere m_sphere; Point m_closest_point; Primitive m_closest_primitive; }; private: // returns a point guaranteed to be on one primitive Point any_reference_point() { CGAL_assertion(!empty()); return m_data[0].reference_point(); } Primitive any_primitive() { CGAL_assertion(!empty()); return m_data[0]; } public: Point best_hint(const Point& query) { if(m_search_tree_constructed) return m_p_search_tree->closest_point(query); else return this->any_reference_point(); } private: // set of input primitives std::vector m_data; // single root node Node* m_p_root; // search KD-tree Search_tree* m_p_search_tree; bool m_search_tree_constructed; private: // Disabled copy constructor & assignment operator typedef AABB_tree Self; AABB_tree(const Self& src); Self& operator=(const Self& src); }; // end class AABB_tree template template AABB_tree::AABB_tree(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond) : m_data() , m_p_root(NULL) , m_p_search_tree(NULL) , m_search_tree_constructed(false) { // Insert each primitive into tree // TODO: get number of elements to reserve space ? while ( first != beyond ) { m_data.push_back(Primitive(first)); ++first; } m_p_root = new Node[m_data.size()-1](); if(m_p_root == NULL) { std::cerr << "Unable to allocate memory for AABB tree" << std::endl; CGAL_assertion(m_p_root != NULL); m_data.clear(); } else m_p_root->expand(m_data.begin(), m_data.end(), m_data.size()); } // Clears tree and insert a set of primitives // Returns true upon successful memory allocation template template bool AABB_tree::rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond) { // cleanup current tree and internal KD tree clear(); // inserts primitives while(first != beyond) { m_data.push_back(Primitive(first)); first++; } // allocates tree nodes m_p_root = new Node[m_data.size()-1](); if(m_p_root == NULL) { std::cerr << "Unable to allocate memory for AABB tree" << std::endl; m_data.clear(); return false; } // constructs the tree m_p_root->expand(m_data.begin(), m_data.end(), m_data.size()); return true; } // constructs the search KD tree from given points template template bool AABB_tree::construct_search_tree(ConstPointIterator first, ConstPointIterator beyond) { // clears current KD tree clear_search_tree(); m_p_search_tree = new Search_tree(first, beyond); if(m_p_search_tree != NULL) { m_search_tree_constructed = true; return true; } else return false; } // constructs the search KD tree from interal primitives template bool AABB_tree::construct_search_tree() { CGAL_assertion(!m_data.empty()); // iterate over primitives to get points on them std::vector points; typename std::vector::const_iterator it; for(it = m_data.begin(); it != m_data.end(); ++it) points.push_back(it->reference_point()); return construct_search_tree(points.begin(), points.end()); } template template bool AABB_tree::do_intersect(const Query& query) const { typedef First_intersection_traits Traversal_traits; Traversal_traits traversal_traits; this->traversal(query, traversal_traits); return traversal_traits.is_intersection_found(); } template template typename Tr::Size_type AABB_tree::number_of_intersected_primitives(const Query& query) const { Counting_traits traversal_traits; this->traversal(query, traversal_traits); return traversal_traits.number_of_intersections(); } template template OutputIterator AABB_tree::all_intersected_primitives(const Query& query, OutputIterator out) const { Listing_primitive_traits traversal_traits(out); this->traversal(query, traversal_traits); return out; } template template OutputIterator AABB_tree::all_intersections(const Query& query, OutputIterator out) const { Listing_intersection_traits traversal_traits(out); this->traversal(query, traversal_traits); return out; } template template boost::optional AABB_tree::any_intersection(const Query& query) const { First_intersection_traits traversal_traits; this->traversal(query, traversal_traits); return traversal_traits.result(); } template template boost::optional AABB_tree::any_intersected_primitive(const Query& query) const { First_primitive_traits traversal_traits; this->traversal(query, traversal_traits); return traversal_traits.result(); } // closest point with user-specified hint template typename AABB_tree::Point AABB_tree::closest_point(const Point& query, const Point& hint) { Distance_traits distance_traits(query,hint); this->traversal(query, distance_traits); return distance_traits.closest_point(); } // closest point without hint, the search KD-tree is queried for the // first closest neighbor point to get a hint template typename AABB_tree::Point AABB_tree::closest_point(const Point& query) { const Point hint = best_hint(); return closest_point(query,hint); } // squared distance with user-specified hint template typename AABB_tree::FT AABB_tree::squared_distance(const Point& query, const Point& hint) const { const Point closest = this->closest_point(query, hint); return CGAL::squared_distance(query, closest); } // squared distance without user-specified hint template typename AABB_tree::FT AABB_tree::squared_distance(const Point& query) const { const Point closest = this->closest_point(query); return CGAL::squared_distance(query, closest); } // closest point with user-specified hint template typename AABB_tree::Primitive AABB_tree::closest_primitive(const Point& query) { const Point hint = best_hint(); return closest_primitive(query,hint); } // closest point with user-specified hint template typename AABB_tree::Primitive AABB_tree::closest_primitive(const Point& query, const Point& hint) { const Point hint = best_hint(); Distance_traits distance_traits(query,hint,any_primitive()); this->traversal(query, distance_traits); return distance_traits.closest_primitive(); } } // end namespace CGAL #endif // CGAL_AABB_TREE_H