\begin{ccRefClass}{Cartesian} \ccInclude{CGAL/Cartesian.h} \ccDefinition A model for a \ccc{Kernel} using Cartesian coordinates to represent the geometric objects. In order for \ccRefName\ to model Euclidean geometry in $E^2$ and/or $E^3$, for some mathematical field $E$ (\textit{e.g.}, the rationals \Q\ or the reals \R), the template parameter FieldNumberType must model the mathematical field $E$. That is, the field operations on this number type must copute the mathematically correct results. If the number type provided as a model for FiedlNumberType is only an approximation of a field (such as the built-in type \ccc{double}), then the geometry provided by the kernel is only an approximation of Euclidean geometry. \ccIsModel \ccRefConceptPage{Kernel} \ccSetThreeColumns{typedef FiledNumberTypeXX}{FT;}{} \ccTypes \ccTypedef{typedef FieldNumberType FT;}{} \ccGlue \ccTypedef{typedef FieldNumberType RT;}{} \ccImplementation This model of a kernel uses reference counting. \ccSeeAlso \ccRefIdfierPage{CGAL::Simple_cartesian} \\ \ccRefIdfierPage{CGAL::Homogeneous} \\ \ccRefIdfierPage{CGAL::Simple_homogeneous} \\ \end{ccRefClass}