\renewcommand{\ccRefPageBegin}{\begin{ccAdvanced}} \renewcommand{\ccRefPageEnd}{\end{ccAdvanced}} \begin{ccRefConcept}{RandomConvexSetTraits_2} \ccCreationVariable{t} \ccTagFullDeclarations \ccIndexSubitem[C]{random_convex_set}{traits requirements} \ccDefinition The concept \ccRefName describes the requirements of the traits class for the function \ccc{random_convex_set_2}. \ccHasModels \ccRefIdfierPage{CGAL::Random_convex_set_traits_2} \\ \ccTypes \ccNestedType{Point_2}{point class.} \ccNestedType{FT}{class used for doing computations on point and vector coordinates (has to fulfill field type requirements).} \ccNestedType{Sum}{AdaptableBinaryFunction class: \ccc{Point_2} $\times$ \ccc{Point_2} $\rightarrow$ \ccc{Point_2}. It returns the point that results from adding the vectors corresponding to both arguments.} \ccNestedType{Scale}{AdaptableBinaryFunction class: \ccc{Point_2} $\times$ \ccc{FT} $\rightarrow$ \ccc{Point_2}. \ccc{Scale(p,k)} returns the point that results from scaling the vector corresponding to \ccc{p} by a factor of \ccc{k}.} \ccNestedType{Max_coordinate}{AdaptableUnaryFunction class: \ccc{Point_2} $\rightarrow$ \ccc{FT}. \ccc{Max_coordinate(p)} returns the coordinate of \ccc{p} with largest absolute value.} \ccNestedType{Angle_less}{AdaptableBinaryFunction class: \ccc{Point_2} $\times$ \ccc{Point_2} $\rightarrow$ \ccc{bool}. It returns \ccc{true}, iff the angle of the direction corresponding to the first argument with respect to the positive $x$-axis is less than the angle of the direction corresponding to the second argument.} \ccOperations \ccMemberFunction{Point_2 origin() const;}{return origin (neutral element for the \ccc{Sum} operation).} \end{ccRefConcept} \renewcommand{\ccRefPageBegin}{} \renewcommand{\ccRefPageEnd}{}