%\RCSdef{\RCSTriangulationRev}{$Id$} %\RCSdefDate{\RCSTriangulationDate}{$Date$} \ccRefChapter{Triangulations\label{chap:triangulation_ref}} \ccChapterAuthor{Samuel Hornus \and Olivier Devillers} TODO: add some introductory text here. \section{Reference Pages Sorted by Type} \subsection*{Concepts} \subsubsection*{Triangulation data structure} \ccRefConceptPage{TriangulationDataStructure} The above concept is also abbreviated as \ccc{TDS}. It defines three types, \ccc{Vertex}, \ccc{Full_cell} and \ccc{Face}, that must respectively fulfill the following concepts: \ccRefConceptPage{TriangulationDSVertex}\\ \ccRefConceptPage{TriangulationDSFullCell}\\ \ccRefConceptPage{TriangulationFace} The above first two concepts are also abbreviated respectively as \ccc{TDSVertex} and \ccc{TDSFullCell}. \subsubsection*{(Geometric) pure complex} \ccRefConceptPage{TriangulationTraits}\\ \ccRefConceptPage{DelaunayTriangulationTraits}\\ %\ccRefConceptPage{RegularTriangulationTraits} \ccRefConceptPage{TriangulationVertex}\\ \ccRefConceptPage{TriangulationFullCell} The above concepts are also abbreviated respectively as \ccc{TrTraits}, \ccc{DTTraits}, %\ccc{RTTraits}, \ccc{TrVertex} and \ccc{TrFullCell}. \subsection*{Classes} \subsubsection*{Triangulation data structure} \ccRefIdfierPage{CGAL::Triangulation_data_structure}\\ \ccRefIdfierPage{CGAL::Triangulation_ds_vertex}\\ \ccRefIdfierPage{CGAL::Triangulation_ds_full_cell} \ccRefIdfierPage{CGAL::Triangulation_face} \subsubsection*{(Geometric) triangulations} \ccRefIdfierPage{CGAL::Triangulation}\\ \ccRefIdfierPage{CGAL::Delaunay_complex} %\ccRefIdfierPage{CGAL::Regular_complex} \ccRefIdfierPage{CGAL::Triangulation_vertex}\\ \ccRefIdfierPage{CGAL::Triangulation_full_cell} \subsection*{Enums} \ccRefIdfierPage{CGAL::Triangulation::Locate_type}