// Copyright (c) 2006 Tel-Aviv University (Israel). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you may redistribute it under // the terms of the Q Public License version 1.0. // See the file LICENSE.QPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Ron Wein #ifndef CGAL_ARR_BEZIER_CURVE_TRAITS_2_H #define CGAL_ARR_BEZIER_CURVE_TRAITS_2_H /*! \file * Definition of the Arr_Bezier_curve_traits_2 class. */ #include #include #include #include CGAL_BEGIN_NAMESPACE /*! \class * A traits class for maintaining an arrangement of Bezier curves with * rational control points. * * The class is templated with three parameters: * Rat_kernel A kernel that defines the type of control points. * Alg_kernel A geometric kernel, where Alg_kernel::FT is the number type * for the coordinates of arrangement vertices and is used to * represent algebraic numbers. * Nt_traits A number-type traits class. This class defines the Rational * number type (should be the same as Rat_kernel::FT) and the * Algebraic number type (should be the same as Alg_kernel::FT) * and supports various operations on them. */ template class Arr_Bezier_curve_traits_2 { public: typedef Rat_kernel_ Rat_kernel; typedef Alg_kernel_ Alg_kernel; typedef Nt_traits_ Nt_traits; typedef Arr_Bezier_curve_traits_2 Self; typedef typename Nt_traits::Integer Integer; typedef typename Rat_kernel::FT Rational; typedef typename Alg_kernel::FT Algebraic; typedef typename Rat_kernel::Point_2 Rat_point_2; typedef typename Alg_kernel::Point_2 Alg_point_2; // Category tags: typedef Tag_true Has_left_category; typedef Tag_true Has_merge_category; typedef Tag_false Has_infinite_category; // Traits-class types: typedef _Bezier_curve_2 Curve_2; typedef _Bezier_x_monotone_2 X_monotone_curve_2; typedef _Bezier_point_2 Point_2; private: // Type definition for the intersection points mapping. typedef typename X_monotone_curve_2::Curve_id Curve_id; typedef typename X_monotone_curve_2::Intersection_point_2 Intersection_point_2; typedef typename X_monotone_curve_2::Intersection_map Intersection_map; Intersection_map _inter_map; // Mapping curve pairs to their intersection // points. public: /*! * Default constructor. */ Arr_Bezier_curve_traits_2 () {} /// \name Functor definitions. //@{ class Compare_x_2 { public: /*! * Compare the x-coordinates of two points. * \param p1 The first point. * \param p2 The second point. * \return LARGER if x(p1) > x(p2); * SMALLER if x(p1) < x(p2); * EQUAL if x(p1) = x(p2). */ Comparison_result operator() (const Point_2& p1, const Point_2& p2) const { if (p1.is_same (p2)) return (EQUAL); return (CGAL::compare (p1.x(), p2.x())); } }; /*! Get a Compare_x_2 functor object. */ Compare_x_2 compare_x_2_object () const { return Compare_x_2(); } class Compare_xy_2 { public: /*! * Compares two points lexigoraphically: by x, then by y. * \param p1 The first point. * \param p2 The second point. * \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2); * SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2); * EQUAL if the two points are equal. */ Comparison_result operator() (const Point_2& p1, const Point_2& p2) const { if (p1.is_same (p2)) return (EQUAL); const Comparison_result res = CGAL::compare (p1.x(), p2.x()); if (res != EQUAL) return (res); return (CGAL::compare (p1.y(), p2.y())); } }; /*! Get a Compare_xy_2 functor object. */ Compare_xy_2 compare_xy_2_object () const { return Compare_xy_2(); } class Construct_min_vertex_2 { public: /*! * Get the left endpoint of the x-monotone curve (segment). * \param cv The curve. * \return The left endpoint. */ const Point_2& operator() (const X_monotone_curve_2 & cv) const { return (cv.left()); } }; /*! Get a Construct_min_vertex_2 functor object. */ Construct_min_vertex_2 construct_min_vertex_2_object () const { return Construct_min_vertex_2(); } class Construct_max_vertex_2 { public: /*! * Get the right endpoint of the x-monotone curve (segment). * \param cv The curve. * \return The right endpoint. */ const Point_2& operator() (const X_monotone_curve_2 & cv) const { return (cv.right()); } }; /*! Get a Construct_max_vertex_2 functor object. */ Construct_max_vertex_2 construct_max_vertex_2_object () const { return Construct_max_vertex_2(); } class Is_vertical_2 { public: /*! * Check whether the given x-monotone curve is a vertical segment. * \param cv The curve. * \return (true) if the curve is a vertical segment; (false) otherwise. */ bool operator() (const X_monotone_curve_2& cv) const { // A rational function can never be vertical: return (cv.is_vertical()); } }; /*! Get an Is_vertical_2 functor object. */ Is_vertical_2 is_vertical_2_object () const { return Is_vertical_2(); } class Compare_y_at_x_2 { private: Intersection_map& _inter_map; // The map of intersection points. public: /*! Constructor. */ Compare_y_at_x_2 (const Intersection_map& map) : _inter_map (const_cast (map)) {} /*! * Return the location of the given point with respect to the input curve. * \param cv The curve. * \param p The point. * \pre p is in the x-range of cv. * \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve; * LARGER if y(p) > cv(x(p)), i.e. the point is above the curve; * EQUAL if p lies on the curve. */ Comparison_result operator() (const Point_2& p, const X_monotone_curve_2& cv) const { return (cv.point_position (p, _inter_map)); } }; /*! Get a Compare_y_at_x_2 functor object. */ Compare_y_at_x_2 compare_y_at_x_2_object () const { return (Compare_y_at_x_2 (_inter_map)); } class Compare_y_at_x_left_2 { private: Intersection_map& _inter_map; // The map of intersection points. public: /*! Constructor. */ Compare_y_at_x_left_2 (const Intersection_map& map) : _inter_map (const_cast (map)) {} /*! * Compares the y value of two x-monotone curves immediately to the left * of their intersection point. * \param cv1 The first curve. * \param cv2 The second curve. * \param p The intersection point. * \pre The point p lies on both curves, and both of them must be also be * defined (lexicographically) to its left. * \return The relative position of cv1 with respect to cv2 immdiately to * the left of p: SMALLER, LARGER or EQUAL. */ Comparison_result operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2, const Point_2& p) const { return (cv1.compare_to_left (cv2, p, _inter_map)); } }; /*! Get a Compare_y_at_x_left_2 functor object. */ Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const { return (Compare_y_at_x_left_2 (_inter_map)); } class Compare_y_at_x_right_2 { private: Intersection_map& _inter_map; // The map of intersection points. public: /*! Constructor. */ Compare_y_at_x_right_2 (const Intersection_map& map) : _inter_map (const_cast (map)) {} /*! * Compares the y value of two x-monotone curves immediately to the right * of their intersection point. * \param cv1 The first curve. * \param cv2 The second curve. * \param p The intersection point. * \pre The point p lies on both curves, and both of them must be also be * defined (lexicographically) to its right. * \return The relative position of cv1 with respect to cv2 immdiately to * the right of p: SMALLER, LARGER or EQUAL. */ Comparison_result operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2, const Point_2& p) const { return (cv1.compare_to_right (cv2, p, _inter_map)); } }; /*! Get a Compare_y_at_x_right_2 functor object. */ Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const { return (Compare_y_at_x_right_2 (_inter_map)); } class Equal_2 { private: Intersection_map& _inter_map; // The map of intersection points. public: /*! Constructor. */ Equal_2 (const Intersection_map& map) : _inter_map (const_cast (map)) {} /*! * Check if the two x-monotone curves are the same (have the same graph). * \param cv1 The first curve. * \param cv2 The second curve. * \return (true) if the two curves are the same; (false) otherwise. */ bool operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2) const { return (cv1.equals (cv2, _inter_map)); } /*! * Check if the two points are the same. * \param p1 The first point. * \param p2 The second point. * \return (true) if the two point are the same; (false) otherwise. */ bool operator() (const Point_2& p1, const Point_2& p2) const { return (p1.equals (p2)); } }; /*! Get an Equal_2 functor object. */ Equal_2 equal_2_object () const { return (Equal_2 (_inter_map)); } class Make_x_monotone_2 { public: /*! * Cut the given Bezier curve into x-monotone subcurves and insert them * into the given output iterator. * \param cv The curve. * \param oi The output iterator, whose value-type is Object. The returned * objects is a wrapper for an X_monotone_curve_2 object. * \return The past-the-end iterator. */ template OutputIterator operator() (const Curve_2& B, OutputIterator oi) { // Compute the t-values where B(t) is a point with a vertical tangent. std::list ts; B.vertical_tangency_points (std::back_inserter (ts)); // Create the x-monotone subcurves. Algebraic t0 = Algebraic (0); typename std::list::const_iterator it; for (it = ts.begin(); it != ts.end(); ++it) { *oi = make_object (X_monotone_curve_2 (B, t0, *it)); ++oi; t0 = *it; } // Create the final subcurve. *oi = make_object (X_monotone_curve_2 (B, t0, Algebraic (1))); return (oi); } }; /*! Get a Make_x_monotone_2 functor object. */ Make_x_monotone_2 make_x_monotone_2_object () const { return Make_x_monotone_2(); } class Split_2 { public: /*! * Split a given x-monotone curve at a given point into two sub-curves. * \param cv The curve to split * \param p The split point. * \param c1 Output: The left resulting subcurve (p is its right endpoint). * \param c2 Output: The right resulting subcurve (p is its left endpoint). * \pre p lies on cv but is not one of its end-points. */ void operator() (const X_monotone_curve_2& cv, const Point_2 & p, X_monotone_curve_2& c1, X_monotone_curve_2& c2) const { cv.split (p, c1, c2); return; } }; /*! Get a Split_2 functor object. */ Split_2 split_2_object () const { return Split_2(); } class Intersect_2 { private: Intersection_map& _inter_map; // The map of intersection points. public: /*! Constructor. */ Intersect_2 (Intersection_map& map) : _inter_map (map) {} /*! * Find the intersections of the two given curves and insert them to the * given output iterator. As two segments may itersect only once, only a * single will be contained in the iterator. * \param cv1 The first curve. * \param cv2 The second curve. * \param oi The output iterator. * \return The past-the-end iterator. */ template OutputIterator operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2, OutputIterator oi) { return (cv1.intersect (cv2, _inter_map, oi)); } }; /*! Get an Intersect_2 functor object. */ Intersect_2 intersect_2_object () { return (Intersect_2 (_inter_map)); } class Are_mergeable_2 { public: /*! * Check whether it is possible to merge two given x-monotone curves. * \param cv1 The first curve. * \param cv2 The second curve. * \return (true) if the two curves are mergeable - if they are supported * by the same line and share a common endpoint; (false) otherwise. */ bool operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2) const { return (cv1.can_merge_with (cv2)); } }; /*! Get an Are_mergeable_2 functor object. */ Are_mergeable_2 are_mergeable_2_object () const { return Are_mergeable_2(); } class Merge_2 { public: /*! * Merge two given x-monotone curves into a single curve (segment). * \param cv1 The first curve. * \param cv2 The second curve. * \param c Output: The merged curve. * \pre The two curves are mergeable, that is they are supported by the * same conic curve and share a common endpoint. */ void operator() (const X_monotone_curve_2& cv1, const X_monotone_curve_2& cv2, X_monotone_curve_2& c) const { c = cv1.merge (cv2); return; } }; /*! Get a Merge_2 functor object. */ Merge_2 merge_2_object () const { return Merge_2(); } //@} /// \name Functor definitions for the Boolean set-operation traits. //@{ class Compare_endpoints_xy_2 { public: /*! * Compare the endpoints of an $x$-monotone curve lexicographically. * (assuming the curve has a designated source and target points). * \param cv The curve. * \return SMALLER if the curve is directed right; * LARGER if the curve is directed left. */ Comparison_result operator() (const X_monotone_curve_2& cv) { if (cv.is_directed_right()) return (SMALLER); else return (LARGER); } }; /*! Get a Compare_endpoints_xy_2 functor object. */ Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const { return Compare_endpoints_xy_2(); } class Construct_opposite_2 { public: /*! * Construct an opposite x-monotone curve (with swapped source and target). * \param cv The curve. * \return The opposite curve. */ X_monotone_curve_2 operator() (const X_monotone_curve_2& cv) { return (cv.flip()); } }; /*! Get a Construct_opposite_2 functor object. */ Construct_opposite_2 construct_opposite_2_object() const { return Construct_opposite_2(); } //@} }; CGAL_END_NAMESPACE #endif