// ====================================================================== // // Copyright (c) 2005-2017 GeometryFactory (France). All Rights Reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s): Le-Jeng Shiue // // ====================================================================== #ifndef CGAL_POLYHEDRON_SUBDIVISION_IMPL_H_02102006 #define CGAL_POLYHEDRON_SUBDIVISION_IMPL_H_02102006 #include #include #include #include #include #include #include #include namespace CGAL { // ====================================================================== namespace Subdivision_method_3 { namespace Private { // ====================================================================== template void PQQ_1step(Poly& p, VertexPointMap vpm, Mask mask) { typedef Polyhedron_decorator_3 PD; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; typedef typename boost::graph_traits::edge_descriptor edge_descriptor; typedef typename boost::graph_traits::vertex_iterator vertex_iterator; typedef typename boost::graph_traits::edge_iterator edge_iterator; typedef typename boost::graph_traits::face_iterator face_iterator; typedef Halfedge_around_face_circulator Halfedge_around_facet_circulator; // Build a new vertices buffer has the following structure // // 0 1 ... e_begin ... f_begin ... (end_of_buffer) // 0 ... e_begin-1 : store the positions of the vertex-vertices // e_begin ... f_begin-1 : store the positions of the edge-vertices // f_begin ... (end) : store the positions of the face-vertices // The index of the vertices buffer should 1-1 map to the distance // of the corresponding iterator to the begin of the iterator. typename boost::graph_traits::vertices_size_type num_vertex = num_vertices(p); typename boost::graph_traits::halfedges_size_type num_edge = num_halfedges(p)/2; typename boost::graph_traits::faces_size_type num_facet = num_faces(p); // If Polyhedron is using vector, we need to reserve the memory to prevent // the CGAL_assertion. // This function for polyhedron using list is VOID. p.reserve(num_vertex+num_edge+num_facet, 4*2*num_edge, 4*num_edge/2); typedef typename boost::property_traits::value_type Point; Point* vertex_point_buffer = new Point[num_vertex + num_edge + num_facet]; Point* edge_point_buffer = vertex_point_buffer + num_vertex; Point* face_point_buffer = edge_point_buffer + num_edge; int i=0; boost::unordered_map v_index; BOOST_FOREACH(vertex_descriptor vh, vertices(p)){ v_index[vh]= i++; } std::vector v_onborder(num_vertex); face_iterator fitr = faces(p).first; for (size_t i = 0; i < num_facet; i++, ++fitr) mask.face_node(*fitr, face_point_buffer[i]); { std::size_t i = 0; BOOST_FOREACH(edge_descriptor ed, edges(p)){ if(is_border(ed,p)){ int v = v_index[target(ed,p)]; v_onborder[v] = true; mask.border_node(halfedge(ed,p), edge_point_buffer[i], vertex_point_buffer[v]); }else{ mask.edge_node(halfedge(ed,p), edge_point_buffer[i]); } ++i; } } vertex_iterator vitr = vertices(p).first; for (size_t i = 0; i < num_vertex; i++, ++vitr) if (!v_onborder[v_index[*vitr]]) mask.vertex_node(*vitr, vertex_point_buffer[i]); // Build the connectivity using insert_vertex() and insert_edge() // 1. insert_vertex() to all edges and set them to new positions // 2. insert_edge() between 2 randomly selected neighboring new inserted // vertices // 3. insert_vertex() to the new inserted edge and set them to new positions // 4. insert_edge() between all other new inserted vertices of step 1 and // the new inserted vertex of step 3 // Step 1. edge_iterator eitr = edges(p).first; for (size_t i = 0; i < num_edge; i++, ++eitr) { vertex_descriptor vh = PD::insert_vertex(p, halfedge(*eitr,p)); put(vpm, vh, edge_point_buffer[i]); } fitr = faces(p).first; // TODO: the topoloy modification can be done by a template function // and that gives the user a chance to create new topological masks. for (size_t i = 0; i < num_facet; i++, ++fitr) { // Step 2. Halfedge_around_facet_circulator hcir_begin(halfedge(*fitr,p),p); Halfedge_around_facet_circulator hcir = hcir_begin; halfedge_descriptor e1 = * ++hcir; // e1 points to the newly inserted vertex ++hcir; // Skips one original vertex halfedge_descriptor e2 = * ++hcir; // points to the next newly inserted vertex ++hcir; // Must move the cir before inserts the new edge !! halfedge_descriptor newe = PD::insert_edge(p, e1, e2); // Step 3. halfedge_descriptor newv = PD::insert_vertex_return_edge(p, newe); newv = prev(opposite(newv,p),p); // change newv to the larger face and // still points to the newly inserted // vertex // Update the geometry data of the newly inserted face-vertices put(vpm, target(newv,p), face_point_buffer[i]); // Step 4. while (hcir != hcir_begin) { e1 = * ++hcir; ++hcir; // Must move the cir before inserts the new edge !! PD::insert_edge(p, e1, newv); } } // Update the geometry data of the newly inserted vertices by the // vertices buffer vitr = vertices(p).first; for (size_t i = 0; i < num_vertex; i++, ++vitr) put(vpm, *vitr, vertex_point_buffer[i]); delete []vertex_point_buffer; } // ====================================================================== template void PTQ_1step(Poly& p, VertexPointMap vpm, Mask mask) { typedef Polyhedron_decorator_3 PD; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; typedef typename boost::graph_traits::edge_descriptor edge_descriptor; typedef typename boost::graph_traits::vertex_iterator vertex_iterator; typedef typename boost::graph_traits::edge_iterator edge_iterator; typedef typename boost::graph_traits::face_iterator face_iterator; typedef Halfedge_around_face_circulator Halfedge_around_face_circulator; typedef typename boost::property_traits::value_type Point; // Build a new vertices buffer has the following structure // // 0 1 ... e_begin ... f_begin ... (end_of_buffer) // 0 ... e_begin-1 : store the positions of the vertex-vertices // e_begin ... (end) : store the positions of the edge-vertices // The index of the vertices buffer should 1-1 map to the distance // of the corresponding iterator to the begin of the iterator. typename boost::graph_traits::vertices_size_type num_vertex = num_vertices(p); typename boost::graph_traits::halfedges_size_type num_edge = num_halfedges(p)/2; typename boost::graph_traits::faces_size_type num_facet = num_faces(p); // If Polyhedron is using vector, we need to reserve the memory to prevent // the CGAL_assertion. // This function for polyhedron using list is VOID. p.reserve(num_vertex+num_edge, 2*2*num_edge, 4*num_edge/2); Point* vertex_point_buffer = new Point[num_vertex + num_edge]; Point* edge_point_buffer = vertex_point_buffer + num_vertex; int i=0; boost::unordered_map v_index; BOOST_FOREACH(vertex_descriptor vh, vertices(p)){ v_index[vh]= i++; } std::vector v_onborder(num_vertex); { std::size_t i = 0; BOOST_FOREACH(edge_descriptor ed, edges(p)){ if(! is_border(ed,p)){ mask.edge_node(halfedge(ed,p), edge_point_buffer[i]); } else{ int v = v_index[target(ed,p)]; v_onborder[v] = true; mask.border_node(halfedge(ed,p), edge_point_buffer[i], vertex_point_buffer[v]); } ++i; } } vertex_iterator vitr = vertices(p).first; for (size_t i = 0; i < num_vertex; i++, ++vitr) if (!v_onborder[i]) mask.vertex_node(*vitr, vertex_point_buffer[i]); // Build the connectivity using insert_vertex() and insert_edge() // 1. insert_vertex() to all edges and set them to new positions // 2. insert_edge() between 2 randomly selected neighboring new inserted // vertices // 3. insert_vertex() to the new inserted edge and set them to new positions // 4. insert_edge() between all other new inserted vertices of step 1 and // the new inserted vertex of step 3 // Step 1. edge_iterator eitr = edges(p).first; for (size_t i = 0; i < num_edge; i++, ++eitr) { vertex_descriptor vh = PD::insert_vertex(p, halfedge(*eitr,p)); put(vpm,vh, edge_point_buffer[i]); } face_iterator fitr = faces(p).first; for (size_t i = 0; i < num_facet; i++, ++fitr) { // Step 2. Halfedge_around_face_circulator hcir_begin(halfedge(*fitr,p),p); Halfedge_around_face_circulator hcir = hcir_begin; // After linsub, the facet valence = 6 CGAL_assertion(circulator_size(hcir)==6); halfedge_descriptor e1 = *(++hcir); ++hcir; halfedge_descriptor e2 = *(++hcir); ++hcir; halfedge_descriptor e3 = *(++hcir); e2 = PD::insert_edge(p, e1, e2); e3 = PD::insert_edge(p, e2, e3); PD::insert_edge(p, e3, e1); } // Update the geometry data of the newly inserted vertices by the // vertices buffer vitr = vertices(p).first; for (size_t i = 0; i < num_vertex; i++, ++vitr) put(vpm, *vitr, vertex_point_buffer[i]); delete []vertex_point_buffer; } // ====================================================================== //#define CGAL_EULER_DQQ_SPLITTING //#define CGAL_EULER_DQQ_TILTING // Tilting is faster template void DQQ_1step(Poly& p, VertexPointMap vpm, Mask mask) { typedef Polyhedron_decorator_3 PD; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; typedef typename boost::graph_traits::edge_descriptor edge_descriptor; typedef typename boost::graph_traits::vertex_iterator vertex_iterator; typedef typename boost::graph_traits::edge_iterator edge_iterator; typedef Halfedge_around_face_circulator Halfedge_around_face_circulator; typedef typename boost::property_traits::value_type Point; typename boost::graph_traits::vertices_size_type num_v = num_vertices(p); typename boost::graph_traits::halfedges_size_type num_e = num_halfedges(p)/2; typename boost::graph_traits::faces_size_type num_f = num_faces(p); std::vector border_halfedges; size_t num_be = 0 ;// AF= p.size_of_border_edges(); BOOST_FOREACH(edge_descriptor ed, edges(p)){ if(is_border(ed,p)){ ++num_be; border_halfedges.push_back(halfedge(ed,p)); } } Point* point_buffer = new Point[num_e*2]; // #ifdef CGAL_EULER_DQQ_SPLITTING // // Splitting //! Splitting is not implemented to support border // build the point_buffer Facet_iterator fitr, fitr_end = p.facets_end(); int pi = 0; for (fitr = p.facets_begin(); fitr != fitr_end; ++fitr) { Halfedge_around_face_circulator cir = fitr->facet_begin(); do { mask.corner_node(cir, point_buffer[pi++]); } while (--cir != fitr->facet_begin()); } // If Polyhedron is using vector, we need to reserve the memory to prevent // the CGAL_assertion. This function for polyhedron using list is VOID. p.reserve(num_v+num_e+num_f, 2*num_e, (2+4+2)*num_e); // Build the connectivity using insert_vertex() and insert_edge() // 1. create barycentric centers of each facet fitr = p.facets_begin(); pi = 0; for (size_t i = 0; i < num_f; i++) { Facet_handle fh = fitr; ++fitr; Vertex_handle vh = (p.create_center_vertex(fh->facet_begin()))->vertex(); // 1.1 add vertex on each new edges Halfedge_around_vertex_circulator vcir = vh->vertex_begin(); int vn = circulator_size(vcir); for (int j = 0; j < vn; ++j) { Halfedge_handle e = vcir; ++vcir; Vertex_handle v = PD::insert_vertex(p, e); v->point() = point_buffer[pi++]; } // 1.2 connect new vertices surround each barycentric center for (int j = 0; j < vn; ++j) { Halfedge_handle e1 = vcir->prev(); ++vcir; Halfedge_handle e2 = vcir->opposite(); PD::insert_edge(p, e1, e2); } // 1.3 remove the barycentric centers p.erase_center_vertex(vcir); } // 2. remove old edges Edge_iterator eitr = p.edges_begin(); for (size_t i = 0; i < num_e; ++i) { Halfedge_handle eh = eitr; ++eitr; p.join_facet(eh); } // 3. connect new vertices surround old vertices and then remove // old vertices. vertex_iterator vitr = p.vertices_begin(); for (size_t i = 0; i < num_v; ++i) { Halfedge_around_vertex_circulator vcir = vitr->vertex_begin(); int vn = circulator_size(vcir); for (int j = 0; j < vn; ++j) { Halfedge_handle e1 = vcir->prev(); ++vcir; Halfedge_handle e2 = vcir->opposite(); PD::insert_edge(p, e1, e2); } ++vitr; p.erase_center_vertex(vcir); } // #else // // Tilting // build the point_buffer vertex_iterator vitr, vitr_end; boost::tie(vitr,vitr_end) = vertices(p); int pi = 0; BOOST_FOREACH(vertex_descriptor vd, vertices(p)){ BOOST_FOREACH(halfedge_descriptor hd, halfedges_around_target(vd,p)){ if (! is_border(hd,p)){ mask.corner_node(hd, point_buffer[pi++]); } } } // If Polyhedron is using vector, we need to reserve the memory to prevent // the CGAL_assertion. This function for polyhedron using list is VOID. p.reserve(num_v+num_e+num_f, 2*num_e, (2+4+2)*num_e); // Build the connectivity using insert_vertex() and insert_edge() pi = 0; for (size_t i = 0; i < num_v; ++i) { vertex_descriptor vh = *vitr; ++vitr; Halfedge_around_target_circulator vcir(vh,p); size_t vn = degree(vh,p); for (size_t j = 0; j < vn; ++j) { halfedge_descriptor e = *vcir; ++vcir; if (! is_border(e,p)) { vertex_descriptor v = PD::insert_vertex(p, e); put(vpm, v, point_buffer[pi++]); } } vcir = Halfedge_around_target_circulator(vh,p); for (size_t j = 0; j < vn; ++j) { if (! is_border(*vcir,p)) { halfedge_descriptor e1 = prev(*vcir, p); ++vcir; if (! is_border(*vcir,p)) { halfedge_descriptor e2 = opposite(*vcir,p); PD::insert_edge(p, e1, e2); } } else ++vcir; } //p.erase_center_vertex(vh->vertex_begin()); } edge_iterator eitr = edges(p).first; for (size_t i = 0; i < num_e; ++i) { halfedge_descriptor eh = halfedge(*eitr,p); ++eitr; if (! is_border(edge(eh,p),p)) { PD::insert_edge(p, prev(prev(eh,p),p), eh); eh = opposite(eh,p); PD::insert_edge(p, prev(prev(eh,p),p), eh); Euler::join_face(eh,p); } else { if (is_border(eh,p)) { eh = opposite(eh,p); PD::insert_edge(p, eh, prev(prev(eh,p),p)); } else PD::insert_edge(p, prev(prev(eh,p),p), eh); } } // after this point, the original border edges are in front! //eitr = edges(p).first; //for (size_t i = 0; i < num_be; ++i) { //halfedge_descriptor eh = halfedge(*eitr,p); //++eitr; BOOST_FOREACH(halfedge_descriptor eeh, border_halfedges){ halfedge_descriptor eh = eeh; if (is_border(eh,p)){ eh = opposite(eh,p); } assert(is_border(eh,p)); halfedge_descriptor ehe = eh; eh = opposite(prev(eh,p),p); while (! is_border(eh,p)) { std::cerr << "before remove_face"<< std::endl; Euler::remove_face(ehe,p); ehe = eh; eh = opposite(prev(eh,p),p); } Euler::remove_face(ehe,p); } vitr = vertices(p).first; for (size_t i = 0; i < num_v-num_be; ++i) { vertex_descriptor vh = *vitr; ++vitr; Euler::remove_center_vertex(halfedge(vh,p),p); } #endif //CGAL_EULER_DQQ_SPLITTING delete []point_buffer; } template void DQQ_1step_alt(Poly& p, VertexPointMap vpm, Mask mask) { std::cout << "Call DQQ_1step alt" << std::endl; typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; typedef typename boost::graph_traits::face_descriptor face_descriptor; typedef typename boost::property_traits::value_type Point; // Note that for types like 'Surface_mesh', num_vertices() returns the TOTAL // number of vertices, which may include removed vertices. typename boost::graph_traits::vertices_size_type num_v = num_vertices(p); typename boost::graph_traits::edges_size_type num_e = num_edges(p); typename boost::graph_traits::faces_size_type num_f = num_faces(p); // If Poly is using vector, we need to reserve the memory to prevent // the CGAL_assertion. This function for polyhedron using list is VOID. Poly newp; newp.reserve(num_v+num_e+num_f, 2*num_e, (2+4+2)*num_e); boost::unordered_map buffer; // map to go from the halfedge in the original mesh to the halfedge in the // subdivided mesh boost::unordered_map old_to_new; // build new n-faces BOOST_FOREACH(face_descriptor fd, faces(p)) { halfedge_descriptor hd = halfedge(fd, p); std::list vertices_of_new_face; // keep the first outside // it will be used to build the correspondence between old and new halfedges Point first_pt; mask.corner_node(hd, first_pt); vertex_descriptor first_v = add_vertex(newp); buffer[first_v] = first_pt; vertices_of_new_face.push_back(first_v); // loop normally to add the rest of the vertices halfedge_descriptor done = hd; hd = next(hd, p); while(hd != done) { Point pt; mask.corner_node(hd, pt); vertex_descriptor v = add_vertex(newp); buffer[v] = pt; vertices_of_new_face.push_back(v); hd = next(hd, p); } face_descriptor new_face = Euler::add_face(vertices_of_new_face, newp); // find the starting halfedge in new that corresponds to halfedge(fd, p) halfedge_descriptor nf_hd = halfedge(new_face, newp); while(target(nf_hd, newp) != first_v) { nf_hd = next(nf_hd, newp); } // build the correspondence old to new halfedges hd = halfedge(fd, p); done = nf_hd; do { old_to_new[hd] = nf_hd; hd = next(hd, p); nf_hd = next(nf_hd, newp); } while (nf_hd != done); } // build new edge-faces BOOST_FOREACH(halfedge_descriptor hd, halfedges(p)) { if(is_border(hd, p)) continue; halfedge_descriptor hd_opp = opposite(hd, p); if(is_border(hd_opp, p)) continue; if(hd > hd_opp) continue; halfedge_descriptor new_hd = opposite(old_to_new[hd], newp); halfedge_descriptor new_hd_opp = opposite(old_to_new[hd_opp], newp); boost::array v = {{source(new_hd, newp), target(new_hd, newp), source(new_hd_opp, newp), target(new_hd_opp, newp)}}; Euler::add_face(v, newp); } // build new vertex-faces BOOST_FOREACH(vertex_descriptor vd, vertices(p)) { halfedge_descriptor hd = halfedge(vd, p); if(is_border(hd, p)) continue; halfedge_descriptor new_hd = opposite(old_to_new[hd], newp); halfedge_descriptor new_face_hd = opposite(prev(new_hd, newp), newp), done = new_face_hd; std::list vertices_of_new_faces; do { vertices_of_new_faces.push_back(source(new_face_hd, newp)); new_face_hd = next(new_face_hd, newp); } while(new_face_hd != done); Euler::add_face(vertices_of_new_faces, newp); } // copy face graph newp into p to keep a valid pointer to vpm p.clear(); boost::unordered_map v2v; CGAL::copy_face_graph(newp, p, std::inserter(v2v, v2v.end())); // empty 'buffer' into vpm typename boost::unordered_map::iterator umit = buffer.begin(), umend = buffer.end(); for(; umit!=umend; ++umit) { vertex_descriptor vd = umit->first; put(vpm, v2v[vd], umit->second); } } // ====================================================================== template void Sqrt3_1step(Poly& p, VertexPointMap vpm, Mask mask) { typedef typename boost::graph_traits::vertex_descriptor vertex_descriptor; typedef typename boost::graph_traits::halfedge_descriptor halfedge_descriptor; typedef typename boost::graph_traits::face_descriptor face_descriptor; typedef typename boost::graph_traits::edge_iterator edge_iterator; typedef typename boost::graph_traits::face_iterator face_iterator; typedef typename boost::property_traits::value_type Point; typename boost::graph_traits::vertices_size_type num_v = num_vertices(p); typename boost::graph_traits::halfedges_size_type num_e = num_halfedges(p)/2; typename boost::graph_traits::faces_size_type num_f = num_faces(p); p.reserve(num_v+num_f, (num_e+3*num_f)*2, 3*num_f); // prepare the smoothed center points Point* cpt = new Point[num_f]; std::size_t i = 0; BOOST_FOREACH (face_descriptor fd, faces(p)) { //ASSERTION_MSG(circulator_size(fitr->facet_begin())==3, "(ERROR) Non-triangle facet!"); mask.face_node(fd, cpt[i++]); } // smooth the vertex points BOOST_FOREACH(vertex_descriptor vd, vertices(p)){ Point p; mask.vertex_node(vd,p); put(vpm,vd,p); } // insert the facet points face_iterator b,e; boost::tie(b,e) = faces(p); for(std::size_t i=0 ; i < num_f; ++i, ++b){ face_descriptor fd = *b; halfedge_descriptor center = Euler::add_center_vertex(halfedge(fd,p),p); put(vpm, target(center,p), cpt[i]); } delete []cpt; // flip the old edges except the border edges edge_iterator eitr = edges(p).first; for (size_t i = 0; i < num_e; ++i) { halfedge_descriptor e = halfedge(*eitr,p); ++eitr; // move to next edge before flip since flip destroys current edge if (! is_border(edge(e,p),p)) { halfedge_descriptor h = Euler::join_face(e,p); Euler::split_face(prev(h,p), next(h,p),p); } } // TODO: border ... CGAL_postcondition(p.is_valid()); } } } } //namespace CGAL #endif //CGAL_POLYHEDRON_SUBDIVISION_H_01292002