// Copyright (c) 2012 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org) // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s): Efi Fogel // Shepard Liu #ifndef CGAL_DRAW_ARRANGEMENT_2_H #define CGAL_DRAW_ARRANGEMENT_2_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { namespace draw_aos { template class Draw_arr_tool { public: using Halfedge_const_handle = typename Arr::Halfedge_const_handle; using Vertex_const_handle = typename Arr::Vertex_const_handle; using Face_const_handle = typename Arr::Face_const_handle; using Ccb_halfedge_const_circulator = typename Arr::Ccb_halfedge_const_circulator; using Inner_ccb_const_iterator = typename Arr::Inner_ccb_const_iterator; using Outer_ccb_const_iterator = typename Arr::Outer_ccb_const_iterator; using Gt = typename Arr::Geometry_traits_2; using Point = typename Arr::Point_2; using X_monotone_curve = typename Arr::X_monotone_curve_2; /*! Construct */ Draw_arr_tool(Arr& a_aos, CGAL::Graphics_scene& a_gs, const GSOptions& a_gso) : m_aos(a_aos) , m_gs(a_gs) , m_gso(a_gso) {} /// Add a face. void add_face(Face_const_handle face) { // std::cout << "add_face()\n"; for(Inner_ccb_const_iterator it = face->inner_ccbs_begin(); it != face->inner_ccbs_end(); ++it) add_ccb(*it); if(!face->is_unbounded()) { for(Outer_ccb_const_iterator it = face->outer_ccbs_begin(); it != face->outer_ccbs_end(); ++it) { add_ccb(*it); draw_region(*it); } } } /// Add a Connected Component of the Boundary. void add_ccb(Ccb_halfedge_const_circulator circ) { // std::cout << "add_ccb()\n"; auto curr = circ; do { auto new_face = curr->twin()->face(); if(m_visited.find(new_face) != m_visited.end()) continue; m_visited[new_face] = true; add_face(new_face); } while(++curr != circ); } /// Draw a region. void draw_region(Ccb_halfedge_const_circulator circ) { // std::cout << "draw_region()\n"; /* Check whether the traits has a member function called * approximate_2_object() and if so check whether the return type, namely * `Approximate_2` has an appropriate operator. * * C++20 supports concepts and `requires` expression; see, e.g., * https://en.cppreference.com/w/cpp/language/constraints; thus, the first * condition above can be elegantly verified as follows: * constexpr bool has_approximate_2_object = * requires(const Gt& traits) { traits.approximate_2_object(); }; * * C++17 has experimental constructs called is_detected and * is_detected_v that can be used to achieve the same goal. * * For now we use C++14 features. */ if(m_gso.colored_face(m_aos, circ->face())) m_gs.face_begin(m_gso.face_color(m_aos, circ->face())); else m_gs.face_begin(); const auto* traits = this->m_aos.geometry_traits(); auto ext = find_smallest(circ, *traits); auto curr = ext; do { // Skip halfedges that are "antenas": while(curr->face() == curr->twin()->face()) curr = curr->twin()->next(); while(curr->face() == curr->twin()->face()) curr = curr->twin()->next(); draw_region_impl1(*traits, curr); curr = curr->next(); } while(curr != ext); m_gs.face_end(); } /// Compile time dispatching /// template , int> = 0> void draw_region_impl2(const T& /* traits */, const A& /* approximate */, Halfedge_const_handle curr) { draw_exact_region(curr); } /// template , int> = 0> auto draw_region_impl2(const T& /* traits */, const A& approx, Halfedge_const_handle curr) { draw_approximate_region(curr, approx); } /*! Draw a region, where the traits does not has approximate_2_object. */ template && !is_or_derived_from_agas_v, int> = 0> void draw_region_impl1(const T& /* traits */, Halfedge_const_handle curr) { draw_exact_region(curr); } /// template && !is_or_derived_from_agas_v, int> = 0> auto draw_region_impl1(const T& traits, Halfedge_const_handle curr) { using Approximate = typename Gt::Approximate_2; draw_region_impl2(traits, traits.approximate_2_object(), curr); } /*! Draw a geodesic region */ template , int> = 0> void draw_region_impl1(const T& traits, Halfedge_const_handle curr) { //! \todo not implemented yet; for now, we just draw the boundaries using draw_curve_impl1() draw_curve_impl1(traits, curr->curve(), false, CGAL::IO::Color()); } /*! Draw a region using approximate coordinates. * Call this member function only if the geometry traits is equipped with * the coordinate-approximation functionality of a curve. * This function must be inlined (e.g., a template) to enable the * compiled-time dispatching in the function `draw_region()`. */ template void draw_approximate_region(Halfedge_const_handle curr, const Approximate& approx) { // std::cout << "draw_approximate_region()\n"; std::vector polyline; double error(0.01); // TODO? (this->pixel_ratio()); bool l2r = curr->direction() == ARR_LEFT_TO_RIGHT; approx(curr->curve(), error, std::back_inserter(polyline), l2r); if(polyline.empty()) return; auto it = polyline.begin(); auto prev = it++; for(; it != polyline.end(); prev = it++) m_gs.add_point_in_face(*prev); } /*! Draw an exact curve. */ template void draw_exact_curve(const XMonotoneCurve& curve, bool colored, const CGAL::IO::Color& c) { const auto* traits = this->m_aos.geometry_traits(); auto ctr_min = traits->construct_min_vertex_2_object(); auto ctr_max = traits->construct_max_vertex_2_object(); m_gs.add_segment(ctr_min(curve), ctr_max(curve)); if(colored) m_gs.add_segment(ctr_min(curve), ctr_max(curve), c); else m_gs.add_segment(ctr_min(curve), ctr_max(curve)); } /*! Draw a region in an exact manner. * This fallback simply draws the curve in an exact manner (and even this is not guaranteed). */ void draw_exact_region(Halfedge_const_handle curr) { draw_exact_curve(curr->curve(), false, CGAL::IO::Color()); } /// Add all faces. template void add_faces(const Traits&) { for(auto it = m_aos.unbounded_faces_begin(); it != m_aos.unbounded_faces_end(); ++it) add_face(it); } /// Compile time dispatching /*! Draw a point using approximate coordinates. */ template void draw_approximate_point(const Point& p, const Approximate& approx, bool colored, const CGAL::IO::Color& color) { if(colored) m_gs.add_point(approx(p), color); else m_gs.add_point(approx(p)); } /// void draw_exact_point(const Point& p, bool colored, const CGAL::IO::Color& color) { if(colored) m_gs.add_point(p, color); else m_gs.add_point(p); } /// template , int> = 0> void draw_point_impl2( const T& /* traits */, const A& /* approximate */, const Point& p, bool colored, const CGAL::IO::Color& c) { draw_exact_point(p, colored, c); } /// template , int> = 0> auto draw_point_impl2(const T& /* traits */, const A& approx, const Point& p, bool colored, const CGAL::IO::Color& c) { draw_approximate_point(p, approx, colored, c); } /*! Draw a point, where the traits does not has approximate_2_object. */ template && !is_or_derived_from_agas_v, int> = 0> void draw_point_impl1(const T& /* traits */, const Point& p, bool colored, const CGAL::IO::Color& c) { draw_exact_point(p, colored, c); } /*! Draw a point, where the traits does have approximate_2_object. */ template && !is_or_derived_from_agas_v, int> = 0> auto draw_point_impl1(const T& traits, const Point& p, bool colored, const CGAL::IO::Color& c) { draw_point_impl2(traits, traits.approximate_2_object(), p, colored, c); } /*! Draw a geodesic point. */ template , int> = 0> void draw_point_impl1(const T& traits, const Point& p, bool colored, const CGAL::IO::Color& color) { using Traits = T; using Ak = typename Traits::Approximate_kernel; using Approx_point_3 = typename Ak::Point_3; auto approx = traits.approximate_2_object(); auto ap = approx(p); auto x = ap.dx(); auto y = ap.dy(); auto z = ap.dz(); auto l = std::sqrt(x * x + y * y + z * z); Approx_point_3 p3(x / l, y / l, z / l); if(colored) m_gs.add_point(p3, color); else m_gs.add_point(p3); } /// Draw a point. void draw_point(const Point& p, bool colored, const CGAL::IO::Color& c) { const auto* traits = m_aos.geometry_traits(); draw_point_impl1(*traits, p, colored, c); } /// template Halfedge_const_handle find_smallest(Ccb_halfedge_const_circulator circ, Arr_geodesic_arc_on_sphere_traits_2 const&) { return circ; } /*! Find the halfedge incident to the lexicographically smallest vertex * along the CCB, such that there is no other halfedge underneath. */ template Halfedge_const_handle find_smallest(Ccb_halfedge_const_circulator circ, const Traits&) { // std::cout << "find_smallest()\n"; const auto* traits = this->m_aos.geometry_traits(); auto cmp_xy = traits->compare_xy_2_object(); auto cmp_y = traits->compare_y_at_x_right_2_object(); // Find the first halfedge directed from left to right auto curr = circ; do if(curr->direction() == CGAL::ARR_LEFT_TO_RIGHT) break; while(++curr != circ); Halfedge_const_handle ext = curr; // Find the halfedge incident to the lexicographically smallest vertex, // such that there is no other halfedge underneath. do { // Discard edges not directed from left to right: if(curr->direction() != CGAL::ARR_LEFT_TO_RIGHT) continue; auto res = cmp_xy(curr->source()->point(), ext->source()->point()); // Discard the edges inciden to a point strictly larger than the point // incident to the stored extreme halfedge: if(res == LARGER) continue; // Store the edge inciden to a point strictly smaller: if(res == SMALLER) { ext = curr; continue; } // The incident points are equal; compare the halfedges themselves: if(cmp_y(curr->curve(), ext->curve(), curr->source()->point()) == SMALLER) ext = curr; } while(++curr != circ); return ext; } /// Add all elements to be drawn. void add_elements() { // std::cout << "add_elements()\n"; // std::cout << "ratio: " << this->pixel_ratio() << std::endl; m_visited.clear(); if(m_aos.is_empty()) return; if(m_gso.are_faces_enabled()) add_faces(*(this->m_aos.geometry_traits())); // Add edges that do not separate faces. if(m_gso.are_edges_enabled()) { for(auto it = m_aos.edges_begin(); it != m_aos.edges_end(); ++it) { if(it->face() != it->twin()->face()) { if(m_gso.draw_edge(m_aos, it)) { if(m_gso.colored_edge(m_aos, it)) draw_curve(it->curve(), true, m_gso.edge_color(m_aos, it)); else draw_curve(it->curve(), false, CGAL::IO::Color()); } } } } // Add all points if(m_gso.are_vertices_enabled()) { for(auto it = m_aos.vertices_begin(); it != m_aos.vertices_end(); ++it) { if(m_gso.colored_vertex(m_aos, it)) draw_point(it->point(), true, m_gso.vertex_color(m_aos, it)); else draw_point(it->point(), false, CGAL::IO::Color()); } } m_visited.clear(); } /*! Draw a curve using approximate coordinates. * Call this member function only of the geometry traits is equipped with * the coordinate-aproximation functionality of a curve. * This function must be inlined (e.g., a template) to enable the * compiled-time dispatching in the function `draw_curve()`. */ template void draw_approximate_curve(const XMonotoneCurve& curve, const Approximate& approx, bool colored, const CGAL::IO::Color& c) { // std::cout << "draw_approximate_curve\n"; std::vector polyline; double error(0.01); // TODO? (this->pixel_ratio()); approx(curve, error, std::back_inserter(polyline)); if(polyline.empty()) return; auto it = polyline.begin(); auto prev = it++; for(; it != polyline.end(); prev = it++) { if(colored) m_gs.add_segment(*prev, *it, c); else m_gs.add_segment(*prev, *it); } } /// template , int> = 0> void draw_curve_impl2(const T& /* traits */, const A& /* approximate */, const X_monotone_curve& xcv, bool colored, const CGAL::IO::Color& c) { draw_exact_curve(xcv, colored, c); } /// template , int> = 0> auto draw_curve_impl2( const T& /* traits */, const A& approx, const X_monotone_curve& xcv, bool colored, const CGAL::IO::Color& c) { draw_approximate_curve(xcv, approx, colored, c); } /*! Draw a curve, where the traits does not has approximate_2_object. */ template && !is_or_derived_from_agas_v, int> = 0> void draw_curve_impl1(const T& /* traits */, const X_monotone_curve& xcv, bool colored, const CGAL::IO::Color& c) { draw_exact_curve(xcv, colored, c); } /*! Draw a curve, where the traits does have approximate_2_object. */ template && !is_or_derived_from_agas_v, int> = 0> auto draw_curve_impl1(const T& traits, const X_monotone_curve& xcv, bool colored, const CGAL::IO::Color& c) { using Approximate = typename Gt::Approximate_2; draw_curve_impl2(traits, traits.approximate_2_object(), xcv, colored, c); } /*! Draw a geodesic curve */ template , int> = 0> void draw_curve_impl1(const T& traits, const X_monotone_curve& xcv, bool colored, const CGAL::IO::Color& c) { // std::cout << "draw_curve (geodesic)\n"; using Traits = T; using Kernel = typename Traits::Kernel; using Ak = typename Traits::Approximate_kernel; using Ap = typename Traits::Approximate_point_2; using Approx_point_3 = typename Ak::Point_3; auto approx = traits.approximate_2_object(); std::vector apoints; double error(0.01); approx(xcv, error, std::back_inserter(apoints)); auto it = apoints.begin(); auto x = it->dx(); auto y = it->dy(); auto z = it->dz(); auto l = std::sqrt(x * x + y * y + z * z); Approx_point_3 prev(x / l, y / l, z / l); for(++it; it != apoints.end(); ++it) { auto x = it->dx(); auto y = it->dy(); auto z = it->dz(); auto l = std::sqrt(x * x + y * y + z * z); Approx_point_3 next(x / l, y / l, z / l); if(colored) m_gs.add_segment(prev, next, c); else m_gs.add_segment(prev, next); prev = next; } } /// Draw a curve. template void draw_curve(const XMonotoneCurve& curve, bool colored, const CGAL::IO::Color& c) { /* Check whether the traits has a member function called * approximate_2_object() and if so check whether the return type, namely * `Approximate_2` has an appropriate operator. * * C++20 supports concepts and `requires` expression; see, e.g., * https://en.cppreference.com/w/cpp/language/constraints; thus, the first * condition above can be elegantly verified as follows: * constexpr bool has_approximate_2_object = * requires(const Gt& traits) { traits.approximate_2_object(); }; * * C++17 has experimental constructs called is_detected and * is_detected_v that can be used to achieve the same goal. * * For now we use C++14 features. */ #if 0 if constexpr (std::experimental::is_detected_v) { const auto* traits = this->m_aos.geometry_traits(); auto approx = traits->approximate_2_object(); draw_approximate_curve(curve, approx); return; } draw_exact_curve(curve); #else const auto* traits = this->m_aos.geometry_traits(); draw_curve_impl1(*traits, curve, colored, c); #endif } protected: Arr& m_aos; CGAL::Graphics_scene& m_gs; const GSOptions& m_gso; std::unordered_map m_visited; }; template static auto map_from_pair_ranges(Range1 range1, Range2 range2) { CGAL_assertion_msg(range1.size() == range2.size(), "The two ranges must have the same size."); auto begin = boost::make_zip_iterator(boost::make_tuple(range1.begin(), range2.begin())); auto end = boost::make_zip_iterator(boost::make_tuple(range1.end(), range2.end())); auto tuple_to_pair = [](const auto& t) { return std::make_pair(boost::get<0>(t), boost::get<1>(t)); }; return unordered_flat_map(boost::make_transform_iterator(begin, tuple_to_pair), boost::make_transform_iterator(end, tuple_to_pair)); } /*! * \brief tracking changes between an arrangement and its copy that will be later inserted to. * * \note tracks insertions only. If any other actions made(e.g. deletions, merging, etc), the state of the tracker * instance may become invalid. * * \tparam Arrangement */ template class Arr_insertion_tracker : Arr_observer { using Base = Arr_observer; using Halfedge_handle = typename Arrangement::Halfedge_handle; using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle; using Face_handle = typename Arrangement::Face_handle; using Face_const_handle = typename Arrangement::Face_const_handle; using Vertex_handle = typename Arrangement::Vertex_handle; using Vertex_const_handle = typename Arrangement::Vertex_const_handle; using X_monotone_curve_2 = typename Arrangement::X_monotone_curve_2; protected: virtual void after_create_vertex(Vertex_handle v) override { m_vertex_map[v] = Vertex_const_handle(); } virtual void after_create_edge(Halfedge_handle e) override { m_halfedge_map[e] = Halfedge_const_handle(); m_halfedge_map[e->twin()] = Halfedge_const_handle(); // twin is created as well } virtual void before_split_edge(Halfedge_handle e, Vertex_handle v, const X_monotone_curve_2& c1, const X_monotone_curve_2& c2) override { if(m_vertex_map.find(v) == m_vertex_map.end()) m_vertex_map[v] = Vertex_const_handle(); // v is newly created } virtual void after_split_edge(Halfedge_handle e1, Halfedge_handle e2) override { if(auto it = m_halfedge_map.find(e1); it == m_halfedge_map.end()) m_halfedge_map[e2] = e1; else if(it->second == Halfedge_const_handle()) m_halfedge_map[e2] = Halfedge_const_handle(); // e1 has no corresponding edge in the original arrangement else m_halfedge_map[e2] = it->second; // e1 is created by splitting an existing edge } virtual void after_split_face(Face_handle f1, Face_handle f2, bool) override { // Face cannot be created but by splitting an existing face. if(auto it = m_face_map.find(f1); it == m_face_map.end()) m_face_map[f2] = f1; else m_face_map[f2] = it->second; // f1 is created by splitting an existing face } public: Arr_insertion_tracker(Arrangement& arr) : Base(arr) {} /*! * \brief Query the original face of a given face. * * \param fh a valid face handle in the modified arrangement. * \return Face_const_handle */ Face_const_handle original_face(Face_const_handle fh) const { auto it = m_face_map.find(fh); if(it == m_face_map.end()) return fh; return it->second; // new face from splitting an existing face } /*! * \brief Query the original halfedge of a given halfedge. * * \param heh a valid halfedge handle in the modified arrangement. * \return Halfedge_const_handle */ Halfedge_const_handle original_halfedge(Halfedge_const_handle he) const { auto it = m_halfedge_map.find(he); if(it == m_halfedge_map.end()) return he; if(it->second == Halfedge_const_handle()) return Halfedge_const_handle(); // newly created halfedge return it->second; } /*! * \brief Query the original vertex of a given vertex. * * \param vh a valid vertex handle in the modified arrangement. * \return Vertex_const_handle */ Vertex_const_handle original_vertex(Vertex_const_handle vh) const { auto it = m_vertex_map.find(vh); if(it == m_vertex_map.end()) return vh; if(it->second == Vertex_const_handle()) return Vertex_const_handle(); // newly created vertex return it->second; // it will never reach here. } private: /*! * Maps tracking the changes between the original arrangement and modified arrangement. * The key is the current feature, and the value is the corresponding feature before modification. * If there is no entry about a feature, the corresponding feature is itself. * If the value is a invalid handle, it means that the feature is newly created and thus has no corresponding * feature in the original arrangement. */ unordered_flat_map m_face_map; unordered_flat_map m_halfedge_map; unordered_flat_map m_vertex_map; }; void draw_unimplemented() { std::cerr << "Geometry traits type of arrangement is required to support approximation of Point_2 and " "X_monotone_curve_2. Traits on curved surfaces needs additional support for parameterization." << std::endl; exit(1); } template void draw_impl_planar( const Arrangement& arr, const GSOptions& gso, const char* title, Bbox_2 initial_bbox, QApplication& app) { Arr_viewer viewer(app.activeWindow(), arr, gso, title, initial_bbox); viewer.show(); app.exec(); } template void draw_impl_agas( const Arrangement& arr, const GSOptions& gso, const char* title, Bbox_2 initial_bbox, QApplication& app) { using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle; using Face_const_handle = typename Arrangement::Face_const_handle; using Vertex_const_handle = typename Arrangement::Vertex_const_handle; using Geom_traits = typename Arrangement::Geometry_traits_2; using X_monotone_curve_2 = typename Geom_traits::X_monotone_curve_2; using Direction_3 = typename Geom_traits::Direction_3; using Point_2 = typename Geom_traits::Point_2; using Agas_template_args = tmpl_args; Arrangement derived_arr(arr); auto vertex_map = map_from_pair_ranges(derived_arr.vertex_handles(), arr.vertex_handles()); auto halfedge_map = map_from_pair_ranges(derived_arr.halfedge_handles(), arr.halfedge_handles()); auto face_map = map_from_pair_ranges(derived_arr.face_handles(), arr.face_handles()); // setup tracker and insert the identification curve. Arr_insertion_tracker tracker(derived_arr); X_monotone_curve_2 id_curve = arr.geometry_traits()->construct_x_monotone_curve_2_object()( Point_2(Direction_3(0, 0, -1), Point_2::MIN_BOUNDARY_LOC), Point_2(Direction_3(0, 0, 1), Point_2::MAX_BOUNDARY_LOC), Direction_3(Agas_template_args::atan_y, -Agas_template_args::atan_x, 0)); insert(derived_arr, id_curve); // derived_gso proxies the call to the original gso GSOptions derived_gso(gso); derived_gso.draw_vertex = [&](const Arrangement&, const Vertex_const_handle& vh) { Vertex_const_handle original_vh = tracker.original_vertex(vh); if(original_vh == Vertex_const_handle() || vertex_map.find(original_vh) == vertex_map.end()) return false; return gso.draw_vertex(arr, vertex_map.at(original_vh)); }; derived_gso.colored_vertex = [&](const Arrangement&, const Vertex_const_handle& vh) { Vertex_const_handle original_vh = tracker.original_vertex(vh); if(original_vh == Vertex_const_handle() || vertex_map.find(original_vh) == vertex_map.end()) return false; return gso.colored_vertex(arr, vertex_map.at(original_vh)); }; derived_gso.vertex_color = [&](const Arrangement&, const Vertex_const_handle& vh) -> CGAL::IO::Color { Vertex_const_handle original_vh = tracker.original_vertex(vh); if(original_vh == Vertex_const_handle() || vertex_map.find(original_vh) == vertex_map.end()) return CGAL::IO::Color(); return gso.vertex_color(arr, vertex_map.at(original_vh)); }; derived_gso.draw_edge = [&](const Arrangement&, const Halfedge_const_handle& he) { Halfedge_const_handle original_he = tracker.original_halfedge(he); if(original_he == Halfedge_const_handle() || halfedge_map.find(original_he) == halfedge_map.end()) return false; return gso.draw_edge(arr, halfedge_map.at(original_he)); }; derived_gso.colored_edge = [&](const Arrangement&, const Halfedge_const_handle& he) { Halfedge_const_handle original_he = tracker.original_halfedge(he); if(original_he == Halfedge_const_handle() || halfedge_map.find(original_he) == halfedge_map.end()) return false; return gso.colored_edge(arr, halfedge_map.at(original_he)); }; derived_gso.edge_color = [&](const Arrangement&, const Halfedge_const_handle& he) -> CGAL::IO::Color { Halfedge_const_handle original_he = tracker.original_halfedge(he); if(original_he == Halfedge_const_handle() || halfedge_map.find(original_he) == halfedge_map.end()) return CGAL::IO::Color(); return gso.edge_color(arr, halfedge_map.at(original_he)); }; derived_gso.draw_face = [&](const Arrangement&, const Face_const_handle& fh) { Face_const_handle original_fh = tracker.original_face(fh); if(face_map.find(original_fh) == face_map.end()) return false; return gso.draw_face(arr, face_map.at(original_fh)); }; derived_gso.colored_face = [&](const Arrangement&, const Face_const_handle& fh) { Face_const_handle original_fh = tracker.original_face(fh); if(face_map.find(original_fh) == face_map.end()) return false; return gso.draw_face(arr, face_map.at(original_fh)); }; derived_gso.face_color = [&](const Arrangement&, const Face_const_handle& fh) -> CGAL::IO::Color { Face_const_handle original_fh = tracker.original_face(fh); if(face_map.find(original_fh) == face_map.end()) return CGAL::IO::Color(); return gso.face_color(arr, face_map.at(original_fh)); }; Arr_viewer viewer(app.activeWindow(), derived_arr, derived_gso, title, initial_bbox); viewer.show(); app.exec(); } template void draw(const Arrangement& arr, const GSOptions& gso, Args&&... args) { using Geom_traits = typename Arrangement::Geometry_traits_2; if constexpr(!has_approximate_traits_v) return draw_unimplemented(); else if constexpr(is_or_derived_from_agas_v) // Arrangements on curved surfaces require special handling. The identification curve must be present to make the // curved surface homeomorphic to a bounded plane. return draw_impl_agas(arr, gso, std::forward(args)...); else return draw_impl_planar(arr, gso, std::forward(args)...); } } // namespace draw_aos /*! * \brief Draw an arrangement on surface. * * \tparam Arrangement * \tparam GSOptions * \param arr the arrangement to be drawn * \param gso graphics scene options * \param title title of the viewer window * \param initial_bbox parameter space bounding box to be shown intially. If empty, the approximate bounding box of the * arrangement is used. For arrangements induced by unbounded curves, the default initial bounding box is computed from * vertex coordinates. */ template void draw(const Arrangement& arr, const GSOptions& gso, const char* title = "2D Arrangement on Surface Viewer", Bbox_2 initial_bbox = Bbox_2(0, 0, 0, 0)) { Qt::init_ogl_context(4, 3); int argc; QApplication app(argc, nullptr); draw_aos::draw(arr, gso, title, initial_bbox, app); } /*! * \brief Draw an arrangement on surface with default graphics scene options. Faces are colored randomly. * * \tparam Arrangement * \param arr the arrangement to be drawn * \param title title of the viewer window * \param initial_bbox parameter space bounding box to be shown intially. If empty, the approximate bounding box of the * arrangement is used. For arrangements induced by unbounded curves, the default initial bounding box is computed from * vertex coordinates. */ template void draw(const Arrangement& arr, const char* title = "2D Arrangement on Surface Viewer", Bbox_2 initial_bbox = Bbox_2(0, 0, 0, 0)) { using Face_const_handle = typename Arrangement::Face_const_handle; using Vertex_const_handle = typename Arrangement::Vertex_const_handle; using Halfedge_const_handle = typename Arrangement::Halfedge_const_handle; using GSOptions = CGAL::Graphics_scene_options; GSOptions gso; gso.enable_vertices(); gso.draw_vertex = [](const Arrangement&, const Vertex_const_handle&) { return true; }; gso.colored_vertex = [](const Arrangement&, const Vertex_const_handle&) { return true; }; gso.vertex_color = [](const Arrangement&, const Vertex_const_handle& vh) -> CGAL::IO::Color { return CGAL::IO::Color(255, 0, 0); }; gso.enable_edges(); gso.draw_edge = [](const Arrangement&, const Halfedge_const_handle&) { return true; }; gso.colored_edge = [](const Arrangement&, const Halfedge_const_handle&) { return true; }; gso.edge_color = [](const Arrangement&, const Halfedge_const_handle& heh) -> CGAL::IO::Color { return CGAL::IO::Color(0, 0, 0); }; gso.enable_faces(); gso.draw_face = [](const Arrangement&, const Face_const_handle&) { return true; }; gso.colored_face = [](const Arrangement&, const Face_const_handle&) { return true; }; gso.face_color = [](const Arrangement&, const Face_const_handle& fh) -> CGAL::IO::Color { CGAL::Random random(std::size_t(fh.ptr())); return get_random_color(random); }; draw(arr, gso, title, initial_bbox); } #define CGAL_ARR_TYPE CGAL::Arrangement_on_surface_2 /// template void add_to_graphics_scene(const CGAL_ARR_TYPE& aos, CGAL::Graphics_scene& graphics_scene, const GSOptions& gso) { draw_aos::Draw_arr_tool dar(aos, graphics_scene, gso); dar.add_elements(); } /// template void add_to_graphics_scene(const CGAL_ARR_TYPE& aos, CGAL::Graphics_scene& graphics_scene) { CGAL::Graphics_scene_options gso; // colored face? gso.colored_face = [](const CGAL_ARR_TYPE&, typename CGAL_ARR_TYPE::Face_const_handle) -> bool { return true; }; // face color gso.face_color = [](const CGAL_ARR_TYPE&, typename CGAL_ARR_TYPE::Face_const_handle fh) -> CGAL::IO::Color { CGAL::Random random((unsigned int)(std::size_t)(&*fh)); return get_random_color(random); }; add_to_graphics_scene(aos, graphics_scene, gso); } /// Draw an arrangement on surface. template void draw_old(const CGAL_ARR_TYPE& aos, const GSOptions& gso, const char* title = "2D Arrangement on Surface Basic Viewer") { CGAL::Graphics_scene graphics_scene; add_to_graphics_scene(aos, graphics_scene, gso); draw_graphics_scene(graphics_scene, title); } /// Draw an arrangement on surface. template void draw_old(const CGAL_ARR_TYPE& aos, const char* title = "2D Arrangement on Surface Basic Viewer") { CGAL::Graphics_scene graphics_scene; add_to_graphics_scene(aos, graphics_scene); draw_graphics_scene(graphics_scene, title); } } // namespace CGAL #endif