// Copyright (c) 1999 Utrecht University (The Netherlands), // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Stefan Schirra #ifndef CGAL_HOMOGENEOUS_VECTOR_2_h #define CGAL_HOMOGENEOUS_VECTOR_2_h #include #include CGAL_BEGIN_NAMESPACE template < class R_ > class VectorH2 { typedef VectorH2 Self; typedef typename R_::FT FT; typedef typename R_::RT RT; typedef typename R_::Point_2 Point_2; typedef typename R_::Segment_2 Segment_2; typedef typename R_::Ray_2 Ray_2; typedef typename R_::Line_2 Line_2; typedef typename R_::Direction_2 Direction_2; typedef typename R_::Vector_2 Vector_2; typedef Threetuple Rep; typedef typename R_::template Handle::type Base; typedef Rational_traits Rat_traits; Base base; public: typedef const FT Cartesian_coordinate_type; typedef const RT& Homogeneous_coordinate_type; typedef R_ R; VectorH2() {} VectorH2(int x, int y) : base(x, y, RT(1)) {} VectorH2(const RT& x, const RT& y) : base (x, y, RT(1)) {} VectorH2(const FT& x, const FT& y) : base(Rat_traits().numerator(x) * Rat_traits().denominator(y), Rat_traits().numerator(y) * Rat_traits().denominator(x), Rat_traits().denominator(x) * Rat_traits().denominator(y)) { CGAL_kernel_assertion(hw() > 0); } VectorH2(const RT& x, const RT& y, const RT& w ) { if ( w >= RT(0) ) base = Rep( x, y, w); else base = Rep(-x, -y, -w); } const Self& rep() const { return static_cast(*this); } bool operator==( const VectorH2& v) const; bool operator!=( const VectorH2& v) const; bool operator==( const Null_vector&) const; bool operator!=( const Null_vector& v) const; const RT & hx() const { return get(base).e0; }; const RT & hy() const { return get(base).e1; }; const RT & hw() const { return get(base).e2; }; FT x() const { return FT(hx()) / FT(hw()); }; FT y() const { return FT(hy()) / FT(hw()); }; FT cartesian(int i) const; const RT & homogeneous(int i) const; FT operator[](int i) const; int dimension() const; Direction_2 direction() const; Vector_2 perpendicular(const Orientation& o ) const; // Vector_2 operator+(const VectorH2 &v) const; Vector_2 operator-(const VectorH2 &v) const; Vector_2 operator-() const; Vector_2 opposite() const; FT squared_length() const; // Vector_2 operator/(const RT &f) const; //Vector_2 operator/(const FT &f) const; // undocumented: VectorH2(const Direction_2 & dir) : base ( dir) {} VectorH2(const Point_2 & p) : base ( p) {} }; template < class R > inline bool VectorH2::operator==( const Null_vector&) const { return (hx() == RT(0)) && (hy() == RT(0)); } template < class R > inline bool VectorH2::operator!=( const Null_vector& v) const { return !(*this == v); } template < class R > CGAL_KERNEL_INLINE bool VectorH2::operator==( const VectorH2& v) const { return ( (hx() * v.hw() == v.hx() * hw() ) &&(hy() * v.hw() == v.hy() * hw() ) ); } template < class R > inline bool VectorH2::operator!=( const VectorH2& v) const { return !(*this == v); } /* XXX */ template < class R > CGAL_KERNEL_INLINE typename VectorH2::FT VectorH2::cartesian(int i) const { CGAL_kernel_precondition( (i==0 || i==1) ); if (i==0) return x(); return y(); } template < class R > CGAL_KERNEL_INLINE const typename VectorH2::RT & VectorH2::homogeneous(int i) const { CGAL_kernel_precondition( (i>=0) && (i<=2) ); if (i==0) return hx(); if (i==1) return hy(); return hw(); } template < class R > inline typename VectorH2::FT VectorH2::operator[](int i) const { return cartesian(i); } template < class R > inline int VectorH2::dimension() const { return 2; } template < class R > CGAL_KERNEL_INLINE typename VectorH2::Direction_2 VectorH2::direction() const { return Direction_2(hx(), hy()); } template < class R > inline typename VectorH2::Vector_2 VectorH2::operator-() const { return VectorH2(- hx(), - hy(), hw() ); } template < class R > inline typename VectorH2::Vector_2 VectorH2::opposite() const { return VectorH2(- hx(), - hy(), hw() ); } template CGAL_KERNEL_INLINE typename VectorH2::Vector_2 VectorH2::operator-(const VectorH2& v) const { return VectorH2( hx()*v.hw() - v.hx()*hw(), hy()*v.hw() - v.hy()*hw(), hw()*v.hw() ); } template CGAL_KERNEL_INLINE typename VectorH2::FT VectorH2::squared_length() const { typedef typename R::FT FT; return FT( CGAL_NTS square(hx()) + CGAL_NTS square(hy()) ) / FT( CGAL_NTS square(hw()) ); } template < class R > CGAL_KERNEL_INLINE typename R::Vector_2 VectorH2::perpendicular(const Orientation& o) const { CGAL_kernel_precondition(o != COLLINEAR); if (o == COUNTERCLOCKWISE) return typename R::Vector_2(-hy(), hx(), hw()); else return typename R::Vector_2(hy(), -hx(), hw()); } CGAL_END_NAMESPACE #endif // CGAL_HOMOGENEOUS_VECTOR_2_h