// Copyright (c) 2005 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // // // Author(s) : Sylvain Pion #ifndef CGAL_CENTROID_H #define CGAL_CENTROID_H #include #include #include #include #include #include // Functions to compute the centroid of N points. // Works in 2D and 3D. // TODO : Note : more numerically stable variants could be implemented as well. // TODO : Specify a traits class concept ? // TODO : Grep for "barycenter" and "centroid" in CGAL to check existing usages. // TODO : Add barycentric_coordinates() (to the kernel, this time). CGAL_BEGIN_NAMESPACE namespace CGALi { //:::::::::: 2D Objects ::::::::::::::::::: // computes the centroid of a 2D point set // takes an iterator range over K::Point_2 template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K&, const typename K::Point_2*, const CGAL::PCA_dimension_0_tag&) { typedef typename K::Vector_2 Vector; typedef typename K::FT FT; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; unsigned int nb_pts = 0; while(begin != end) { v = v + (*begin++ - ORIGIN); nb_pts++; } return ORIGIN + v / (FT)nb_pts; }// end centroid of a 2D point set // computes the centroid of a 2D segment set // takes an iterator range over K::Segment_2 // centriod for 2D segment set with 0D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& k, const typename K::Segment_2*, const CGAL::PCA_dimension_0_tag& tag) { typedef typename K::Point_2 Point; typedef typename K::Segment_2 Segment; CGAL_precondition(begin != end); std::list points; for(InputIterator it = begin; it != end; it++) { const Segment& s = *it; points.push_back(s[0]); points.push_back(s[1]); } return centroid(points.begin(),points.end(),k,(Point*)NULL,tag); }// end centriod for 2D segment set with 0D tag // centriod for 2D segment set with 1D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Segment_2*, const CGAL::PCA_dimension_1_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_2 Vector; typedef typename K::Point_2 Point; typedef typename K::Segment_2 Segment; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_lengths = 0; for(InputIterator it = begin; it != end; it++) { const Segment& s = *it; FT length = std::sqrt(std::abs(s.squared_length())); Point c = K().construct_midpoint_2_object()(s[0],s[1]); v = v + length * (c - ORIGIN); sum_lengths += length; } CGAL_assertion(sum_lengths != 0.0); return ORIGIN + v / sum_lengths; } // end centroid of a 2D segment set with 1D tag // computes the centroid of a 2D triangle set // takes an iterator range over K::Triangle_2 // centriod for 2D triangle set with 0D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& k, const typename K::Triangle_2*, const CGAL::PCA_dimension_0_tag& tag) { typedef typename K::Triangle_2 Triangle; typedef typename K::Point_2 Point; CGAL_precondition(begin != end); std::list points; for(InputIterator it = begin; it != end; it++) { const Triangle& triangle = *it; points.push_back(triangle[0]); points.push_back(triangle[1]); points.push_back(triangle[2]); } return centroid(points.begin(),points.end(),k,(Point*)NULL,tag); } // end centroid of a 2D triangle set with 0D tag // centriod for 2D triangle set with 1D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& k, const typename K::Triangle_2*, const CGAL::PCA_dimension_1_tag& tag) { typedef typename K::Triangle_2 Triangle; typedef typename K::Segment_2 Segment; CGAL_precondition(begin != end); std::list segments; for(InputIterator it = begin; it != end; it++) { const Triangle& triangle = *it; segments.push_back(triangle[0],triangle[1]); segments.push_back(triangle[1],triangle[2]); segments.push_back(triangle[2],triangle[0]); } return centroid(segments.begin(),segments.end(),k,(Segment*)NULL,tag); } // end centroid of a 2D triangle set with 1D tag // centriod for 2D triangle set with 2D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Triangle_2*, const CGAL::PCA_dimension_2_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_2 Vector; typedef typename K::Point_2 Point; typedef typename K::Triangle_2 Triangle; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_areas = 0; for(InputIterator it = begin; it != end; it++) { const Triangle& triangle = *it; FT unsigned_area = std::abs(triangle.area()); Point c = K().construct_centroid_2_object()(triangle[0],triangle[1],triangle[2]); v = v + unsigned_area * (c - ORIGIN); sum_areas += unsigned_area; } CGAL_assertion(sum_areas != 0.0); return ORIGIN + v / sum_areas; } // end centroid of a 2D triangle set with 2D tag // computes the centroid of a 2D circle set // takes an iterator range over K::Circle_2 // centriod for 2D circle set with 1D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Circle_2*, const CGAL::PCA_dimension_1_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_2 Vector; typedef typename K::Point_2 Point; typedef typename K::Circle_2 Circle; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_lengths = 0; for(InputIterator it = begin; it != end; it++) { const Circle& s = *it; FT radius = std::sqrt(s.squared_radius()); Point c = s.center(); v = v + radius * (c - ORIGIN); sum_lengths += radius; } CGAL_assertion(sum_lengths != 0.0); return ORIGIN + v / sum_lengths; } // end centroid of a 2D circle set with 1D tag // centriod for 2D circle set with 2D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Circle_2*, const CGAL::PCA_dimension_2_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_2 Vector; typedef typename K::Point_2 Point; typedef typename K::Circle_2 Circle; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_areas = 0; for(InputIterator it = begin; it != end; it++) { const Circle& s = *it; FT sq_radius = s.squared_radius(); Point c = s.center(); v = v + sq_radius * (c - ORIGIN); sum_areas += sq_radius; } CGAL_assertion(sum_areas != 0.0); return ORIGIN + v / sum_areas; } // end centroid of a 2D circle set with 2D tag // computes the centroid of a 2D rectangle set // takes an iterator range over K::Iso_Rectangle_2 // centriod for 2D rectangle set with 0D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& k, const typename K::Iso_rectangle_2*, const CGAL::PCA_dimension_0_tag& tag) { typedef typename K::Iso_rectangle_2 Iso_rectangle; typedef typename K::Point_2 Point; CGAL_precondition(begin != end); std::list points; for(InputIterator it = begin; it != end; it++) { const Iso_rectangle& r = *it; points.push_back(r[0]); points.push_back(r[1]); points.push_back(r[2]); points.push_back(r[3]); } return centroid(points.begin(),points.end(),k,(Point*)NULL,tag); } // end centroid of a 2D rectangle set with 0D tag // centriod for 2D rectangle set with 1D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& k, const typename K::Iso_rectangle_2*, const CGAL::PCA_dimension_1_tag& tag) { typedef typename K::Iso_rectangle_2 Iso_rectangle; typedef typename K::Segment_2 Segment; CGAL_precondition(begin != end); std::list segments; for(InputIterator it = begin; it != end; it++) { const Iso_rectangle& r = *it; segments.push_back(r[0],r[1]); segments.push_back(r[1],r[2]); segments.push_back(r[2],r[3]); segments.push_back(r[3],r[0]); } return centroid(segments.begin(),segments.end(),k,(Segment*)NULL,tag); } // end centroid of a 2D rectangle set with 1D tag // centriod for 2D rectangle set with 2D tag template < typename InputIterator, typename K > typename K::Point_2 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Iso_rectangle_2*, const CGAL::PCA_dimension_2_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_2 Vector; typedef typename K::Point_2 Point; typedef typename K::Iso_rectangle_2 Iso_rectangle; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_areas = 0; for(InputIterator it = begin; it != end; it++) { const Iso_rectangle& r = *it; FT unsigned_area = std::abs(r.area()); Point c = K().construct_centroid_2_object()(r[0],r[1],r[2],r[3]); v = v + unsigned_area * (c - ORIGIN); sum_areas += unsigned_area; } CGAL_assertion(sum_areas != 0.0); return ORIGIN + v / sum_areas; } // end centroid of a 2D rectangle set with 2D tag //::::::::::: 3D Objects :::::::::::::::::::::::::: // computes the centroid of a 3D point set // takes an iterator range over K::Point_3 // centriod for 3D point set with 0D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K&, const typename K::Point_3*, const CGAL::PCA_dimension_0_tag& tag) { typedef typename K::Vector_3 Vector; typedef typename K::FT FT; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; unsigned int nb_pts = 0; while (begin != end) { v = v + (*begin++ - ORIGIN); nb_pts++; } return ORIGIN + v / (FT)nb_pts; }// end centroid of a 3D point set with 0D tag // centriod for 3D segment set with 1D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Segment_3*, const CGAL::PCA_dimension_1_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_3 Vector; typedef typename K::Point_3 Point; typedef typename K::Segment_3 Segment; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_lengths = 0; for(InputIterator it = begin; it != end; it++) { const Segment& s = *it; FT length = std::sqrt(s.squared_length()); // Point c = K().construct_midpoint_3_object()(s[0],s[1]); Point c = Point((s[0][0] + s[1][0])/2.0, (s[0][1] + s[1][1])/2.0, (s[0][2] + s[1][2])/2.0); v = v + length * (c - ORIGIN); sum_lengths += length; } CGAL_assertion(sum_lengths != 0.0); return ORIGIN + v / sum_lengths; } // end centroid of a 3D segment set with 1D tag // computes the centroid of a 3D triangle set // takes an iterator range over K::Triangle_3 // centriod for 3D triangle set with 0D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& k, const typename K::Triangle_3*, const CGAL::PCA_dimension_0_tag& tag) { typedef typename K::Triangle_3 Triangle; typedef typename K::Point_3 Point; CGAL_precondition(begin != end); std::list points; for(InputIterator it = begin; it != end; it++) { const Triangle& triangle = *it; points.push_back(triangle[0]); points.push_back(triangle[1]); points.push_back(triangle[2]); } return centroid(points.begin(),points.end(),k,(Point*)NULL,tag); } // end centroid of a 3D triangle set with 0D tag // centriod for 3D triangle set with 1D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& k, const typename K::Triangle_3*, const CGAL::PCA_dimension_1_tag& tag) { typedef typename K::Triangle_3 Triangle; typedef typename K::Segment_3 Segment; CGAL_precondition(begin != end); std::list segments; for(InputIterator it = begin; it != end; it++) { const Triangle& triangle = *it; segments.push_back(triangle[0],triangle[1]); segments.push_back(triangle[1],triangle[2]); segments.push_back(triangle[2],triangle[0]); } return centroid(segments.begin(),segments.end(),k,(Segment*)NULL,tag); } // end centroid of a 3D triangle set with 1D tag // centriod for 3D triangle set with 2D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Triangle_3*, const CGAL::PCA_dimension_2_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_3 Vector; typedef typename K::Point_3 Point; typedef typename K::Triangle_3 Triangle; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_areas = 0; for(InputIterator it = begin; it != end; it++) { const Triangle& triangle = *it; FT unsigned_area = std::sqrt(triangle.squared_area()); Point c = K().construct_centroid_3_object()(triangle[0],triangle[1],triangle[2]); v = v + unsigned_area * (c - ORIGIN); sum_areas += unsigned_area; } CGAL_assertion(sum_areas != 0.0); return ORIGIN + v / sum_areas; } // end centroid of a 3D triangle set with 2D tag // computes the centroid of a 3D sphere set // takes an iterator range over K::Sphere_3 // centriod for 3D sphere set with 2D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Sphere_3*, const CGAL::PCA_dimension_2_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_3 Vector; typedef typename K::Point_3 Point; typedef typename K::Sphere_3 Sphere; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_areas = 0; for(InputIterator it = begin; it != end; it++) { const Sphere& sphere = *it; FT unsigned_area = sphere.squared_radius(); Point c = sphere.center(); v = v + unsigned_area * (c - ORIGIN); sum_areas += unsigned_area; } CGAL_assertion(sum_areas != 0.0); return ORIGIN + v / sum_areas; } // end centroid of a 3D sphere set with 2D tag // centriod for 3D sphere set with 3D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Sphere_3*, const CGAL::PCA_dimension_3_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_3 Vector; typedef typename K::Point_3 Point; typedef typename K::Sphere_3 Sphere; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_volumes = 0; for(InputIterator it = begin; it != end; it++) { const Sphere& sphere = *it; FT unsigned_volume = sphere.squared_radius() * std::sqrt(sphere.squared_radius()); Point c = sphere.center(); v = v + unsigned_volume * (c - ORIGIN); sum_volumes += unsigned_volume; } CGAL_assertion(sum_volumes != 0.0); return ORIGIN + v / sum_volumes; } // end centroid of a 3D sphere set with 3 tag // computes the centroid of a 3D cuboid set // takes an iterator range over K::Iso_cuboid_3 // centriod for 3D cuboid set with 0D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& k, const typename K::Iso_cuboid_3*, const CGAL::PCA_dimension_0_tag& tag) { typedef typename K::Iso_cuboid_3 Iso_cuboid; typedef typename K::Point_3 Point; CGAL_precondition(begin != end); std::list points; for(InputIterator it = begin; it != end; it++) { const Iso_cuboid& cuboid = *it; points.push_back(cuboid[0]); points.push_back(cuboid[1]); points.push_back(cuboid[2]); points.push_back(cuboid[3]); points.push_back(cuboid[4]); points.push_back(cuboid[5]); points.push_back(cuboid[6]); points.push_back(cuboid[7]); } return centroid(points.begin(),points.end(),k,(Point*)NULL,tag); } // end centroid of a 3D cuboid set with 0D tag // centriod for 3D cuboid set with 1D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& k, const typename K::Iso_cuboid_3*, const CGAL::PCA_dimension_1_tag& tag) { typedef typename K::Iso_cuboid_3 Iso_cuboid; typedef typename K::Segment_3 Segment; CGAL_precondition(begin != end); std::list segments; for(InputIterator it = begin; it != end; it++) { const Iso_cuboid& cuboid = *it; segments.push_back(cuboid[0],cuboid[1]); segments.push_back(cuboid[1],cuboid[2]); segments.push_back(cuboid[2],cuboid[3]); segments.push_back(cuboid[3],cuboid[0]); segments.push_back(cuboid[0],cuboid[5]); segments.push_back(cuboid[5],cuboid[4]); segments.push_back(cuboid[4],cuboid[3]); segments.push_back(cuboid[1],cuboid[6]); segments.push_back(cuboid[6],cuboid[7]); segments.push_back(cuboid[7],cuboid[2]); segments.push_back(cuboid[4],cuboid[7]); segments.push_back(cuboid[5],cuboid[6]); } return centroid(segments.begin(),segments.end(),k,(Segment*)NULL,tag); } // end centroid of a 3D cuboid set with 1D tag // centriod for 3D cuboid set with 2D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Iso_cuboid_3*, const CGAL::PCA_dimension_2_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_3 Vector; typedef typename K::Point_3 Point; typedef typename K::Iso_cuboid_3 Iso_cuboid; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_areas = 0; for(InputIterator it = begin; it != end; it++) { const Iso_cuboid& cuboid = *it; FT unsigned_area = 2 * ((cuboid.xmax()-cuboid.xmin())*(cuboid.ymax()-cuboid.ymin()) + (cuboid.xmax()-cuboid.xmin())*(cuboid.zmax()-cuboid.zmin()) + (cuboid.ymax()-cuboid.ymin())*(cuboid.zmax()-cuboid.zmin())); Point c = K().construct_centroid_3_object()(cuboid[0],cuboid[1],cuboid[3],cuboid[5]); v = v + unsigned_area * (c - ORIGIN); sum_areas += unsigned_area; } CGAL_assertion(sum_areas != 0.0); return ORIGIN + v / sum_areas; } // end centroid of a 3D cuboid set with 2D tag // centriod for 3D cuboid set with 3D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Iso_cuboid_3*, const CGAL::PCA_dimension_3_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_3 Vector; typedef typename K::Point_3 Point; typedef typename K::Iso_cuboid_3 Iso_cuboid; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_volumes = 0; for(InputIterator it = begin; it != end; it++) { const Iso_cuboid& cuboid = *it; FT unsigned_volume = cuboid.volume(); Point c = K().construct_centroid_3_object()(cuboid[0],cuboid[1],cuboid[3],cuboid[5]); v = v + unsigned_volume * (c - ORIGIN); sum_volumes += unsigned_volume; } CGAL_assertion(sum_volumes != 0.0); return ORIGIN + v / sum_volumes; } // end centroid of a 3D cuboid set with 3D tag // centriod for 3D Tetrahedron set with 3D tag template < typename InputIterator, typename K > typename K::Point_3 centroid(InputIterator begin, InputIterator end, const K& , const typename K::Tetrahedron_3*, const CGAL::PCA_dimension_3_tag& tag) { typedef typename K::FT FT; typedef typename K::Vector_3 Vector; typedef typename K::Point_3 Point; typedef typename K::Tetrahedron_3 Tetrahedron; CGAL_precondition(begin != end); Vector v = NULL_VECTOR; FT sum_volumes = 0; for(InputIterator it = begin; it != end; it++) { const Tetrahedron& Tetrahedron = *it; FT unsigned_volume = Tetrahedron.volume(); Point c = K().construct_centroid_3_object()(Tetrahedron[0],Tetrahedron[1],Tetrahedron[2],Tetrahedron[3]); v = v + unsigned_volume * (c - ORIGIN); sum_volumes += unsigned_volume; } CGAL_assertion(sum_volumes != 0.0); return ORIGIN + v / sum_volumes; } // end centroid of a 3D Tetrahedron set with 3D tag } // namespace CGALi // computes the centroid of a set of kernel objects // takes an iterator range over kernel objects template < typename InputIterator, typename K, typename tag > inline typename Point::value_type, K>::value, K >::type centroid(InputIterator begin, InputIterator end, const K& k, const tag& t) { typedef typename std::iterator_traits::value_type Value_type; return CGALi::centroid(begin, end, k,(Value_type*) NULL, t); } // this one takes an iterator range over kernel objects // and uses Kernel_traits<> to find out its kernel. template < typename InputIterator, typename tag > inline typename Point::value_type, typename Kernel_traits::value_type>::Kernel >::value, typename Kernel_traits::value_type>::Kernel >::type centroid(InputIterator begin, InputIterator end, const tag& t) { typedef typename std::iterator_traits::value_type Point; typedef typename Kernel_traits::Kernel K; return CGAL::centroid(begin, end, K(), t); } CGAL_END_NAMESPACE #endif