% ============================================================================= % The CGAL Developers' Manual % Chapter: Memory mangement % ----------------------------------------------------------------------------- % file : memory_management.tex % authors: Michael Seel % ----------------------------------------------------------------------------- % $Revision$ % $Date$ % ============================================================================= \chapter{Memory Management} \label{chap:memory_management} \ccChapterRelease{Chapter Version: 1.0} \\ \ccChapterAuthor{Michael Seel ({\tt seel@mpi-sb.mpg.de})} One of the design goals of \cgal\ (Section~\ref{sec:design_goals}) is efficiency,\ccIndexMainItem{efficiency} and this means not only implementing efficient algorithms but also implementing them efficiently. One way to improve the efficiency of an implementation is through efficient memory management. Here we describe one way to address this using the allocator interface. \section{The \CC\ standard allocator interface} \label{sec:allocator_interface} \ccIndexMainItemBegin{allocator} We first give a short presentation of the memory allocator interface. Objects of type \ccc{allocator} can be used to obtain small, typed chunks of memory to be used, for example, as static members of a class. This is especially interesting with classes of a constant size that are frequently allocated and deallocated (geometric objects, \etc), since a memory allocator can maintain the corresponding memory chunks in local blocks and thus can answer allocation and deallocation calls much faster than the corresponding system calls. We first recapitulate the interface of an allocator: \input{Allocator} \ccIndexMainItemEnd{allocator} \section{The allocator macro} \label{sec:allocator_macro} \ccIndexSubitemBegin{allocator}{macro} The macro \ccc{CGAL_ALLOCATOR}\ccIndexMainItem{\ccFont CGAL_ALLOCATOR} is defined in the file \ccc{} to be either the \leda\ allocator if \leda is present, or the standard allocator from \ccc{} if not: \begin{verbatim} #ifndef CGAL_MEMORY_H #define CGAL_MEMORY_H #include #ifdef CGAL_USE_LEDA #include #define CGAL_ALLOCATOR(t) leda_allocator #else #define CGAL_ALLOCATOR(t) std::allocator #endif #endif // CGAL_MEMORY_H \end{verbatim} \ccIndexSubitemEnd{allocator}{macro} \section{Using the allocator} \label{sec:using_memory_allocator} \ccIndexSubitemBegin{allocator}{as template parameter} How should a data structure use the allocator mechanism? Just make the allocator one of the template arguments of the data structure. Then use a static member object to allocate items on the heap that you want to keep optimized regarding allocation and deallocation. We show an example using a trivial list structure: \begin{verbatim} #include template class dlink { T some_member; }; template < typename T, typename Alloc = CGAL_ALLOCATOR(dlink) > class list { public: typedef dlink* dlink_ptr; typedef Alloc list_allocator; static list_allocator M; list() { p = M.allocate(1); // allocation of space for one dlink M.construct(p,dlink()); // inplace construction of object } ~list() { M.destroy(p); // destroy object M.deallocate(p,1); // deallocate memory } private: dlink_ptr p; }; // init static member allocator object: template typename list::list_allocator list::M = typename list::list_allocator(); int main() { list L; return 0; } \end{verbatim} \ccIndexSubitemEnd{allocator}{as template parameter} \InternalOnly{ \section{Requirements and recommendations} \label{sec:memory_req_and_rec} %\noindent %Requirements: %\begin{itemize} %\end{itemize} \noindent Recommendations: \begin{itemize} \item Use an allocator template parameter (which defaults to \ccc{CGAL_ALLOCATOR}) for data structures for which an optimization with regard to allocation and deallocation is benefcial. \end{itemize} }