mirror of https://github.com/CGAL/cgal
69 lines
2.2 KiB
C++
69 lines
2.2 KiB
C++
// example: extracting and verifying a proof of infeasibility from the solution
|
|
#include <cassert>
|
|
|
|
#include <CGAL/QP_models.h>
|
|
#include <CGAL/QP_functions.h>
|
|
|
|
// choose exact integral type
|
|
#ifdef CGAL_USE_GMP
|
|
#include <CGAL/Gmpz.h>
|
|
typedef CGAL::Gmpz ET;
|
|
#else
|
|
#include <CGAL/MP_Float.h>
|
|
typedef CGAL::MP_Float ET;
|
|
#endif
|
|
|
|
// program and solution types
|
|
typedef CGAL::Nonnegative_linear_program_from_iterators
|
|
<int**, // for A
|
|
int*, // for b
|
|
CGAL::Comparison_result*, // for r
|
|
int*> // for c
|
|
Program;
|
|
typedef CGAL::Quadratic_program_solution<ET> Solution;
|
|
|
|
// we demonstrate Farkas Lemma: either the system
|
|
// A x <= b
|
|
// x >= 0
|
|
// has a solution, or there exists y such that
|
|
// y >= 0
|
|
// y^TA >= 0
|
|
// y^Tb < 0
|
|
// In the following instance, the first system has no solution,
|
|
// since adding up the two inequalities gives x_2 <= -1:
|
|
// x_1 - 2x_2 <= 1
|
|
// -x_1 + 3x_2 <= -2
|
|
// x_1, x_2 >= 0
|
|
|
|
int main() {
|
|
int Ax1[] = { 1, -1}; // column for x1
|
|
int Ax2[] = {-2, 3}; // column for x2
|
|
int* A[] = {Ax1, Ax2}; // A comes columnwise
|
|
int b[] = {1, -2}; // right-hand side
|
|
CGAL::Comparison_result
|
|
r[] = {CGAL::SMALLER, CGAL::SMALLER}; // constraints are "<="
|
|
int c[] = {0, 0}; // zero objective function
|
|
|
|
// now construct the linear program; the first two parameters are
|
|
// the number of variables and the number of constraints (rows of A)
|
|
Program lp (2, 2, A, b, r, c);
|
|
|
|
// solve the program, using ET as the exact type
|
|
Solution s = CGAL::solve_nonnegative_linear_program(lp, ET());
|
|
|
|
// get certificate for infeasibility
|
|
assert (s.is_infeasible());
|
|
Solution::Infeasibility_certificate_iterator y =
|
|
s.infeasibility_certificate_begin();
|
|
// check y >= 0
|
|
assert (ET(y[0]) >= 0);
|
|
assert (ET(y[1]) >= 0);
|
|
// check y^T A >= 0
|
|
assert (ET(y[0]) * A[0][0] + ET(y[1]) * A[0][1] >= 0);
|
|
assert (ET(y[0]) * A[1][0] + ET(y[1]) * A[1][1] >= 0);
|
|
// check y^T b < 0
|
|
assert (ET(y[0]) * b[0] + ET(y[1]) * b[1] < 0);
|
|
|
|
return 0;
|
|
}
|