cgal/Interpolation/include/CGAL/surface_neighbor_coordinate...

320 lines
13 KiB
C++

// Copyright (c) 2003 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Julia Floetotto
// ATTENTION : the surface is supposed to be a closed surface
#ifndef CGAL_SURFACE_NEIGHBOR_COORDINATES_3_H
#define CGAL_SURFACE_NEIGHBOR_COORDINATES_3_H
#include <CGAL/license/Interpolation.h>
#include <CGAL/Iterator_project.h>
#include <CGAL/Voronoi_intersection_2_traits_3.h>
#include <CGAL/Regular_triangulation_2.h>
#include <CGAL/regular_neighbor_coordinates_2.h>
#include <algorithm>
#include <functional>
#include <iterator>
#include <list>
#include <utility>
#include <vector>
namespace CGAL {
template <class OutputIterator, class InputIterator, class Kernel>
inline
Triple< OutputIterator, typename Kernel::FT, bool >
surface_neighbor_coordinates_3(InputIterator first, InputIterator beyond,
const typename Kernel::Point_3& p,
const typename Kernel::Vector_3& normal,
OutputIterator out,
const Kernel&)
{
typedef Voronoi_intersection_2_traits_3<Kernel> I_gt;
return surface_neighbor_coordinates_3(first, beyond, p, out, I_gt(p, normal));
}
template <class OutputIterator, class InputIterator, class ITraits>
Triple< OutputIterator, typename ITraits::FT, bool >
surface_neighbor_coordinates_3(InputIterator first, InputIterator beyond,
const typename ITraits::Point_2& p,
OutputIterator out,
const ITraits& traits)
{
//definition of the Voronoi intersection triangulation:
typedef Regular_triangulation_2<ITraits> I_triangulation;
//build Voronoi intersection triangulation:
I_triangulation it(traits);
typename ITraits::Construct_weighted_point_2 p2wp =
it.geom_traits().construct_weighted_point_2_object();
typename ITraits::Construct_point_2 wp2p =
it.geom_traits().construct_point_2_object();
while(first != beyond){
it.insert(p2wp(*first++));
}
typedef std::vector<std::pair<typename ITraits::Weighted_point_2,
typename ITraits::FT> > WPoint_coordinate_vector;
WPoint_coordinate_vector wpoint_coords;
CGAL::Triple<std::back_insert_iterator<WPoint_coordinate_vector>,
typename ITraits::FT, bool> res =
regular_neighbor_coordinates_2(it, p2wp(p), std::back_inserter(wpoint_coords));
// regular_neighbor_coordinates_2 returns weighted_point_2 (in fact, _3)
// but surface_neighbor_coordinates_3 returns point_3 so the weight must be
// dropped
typename WPoint_coordinate_vector::const_iterator wpit = wpoint_coords.begin(),
wpend = wpoint_coords.end();
for(; wpit!=wpend; ++wpit)
*out++ = std::make_pair(wp2p(wpit->first), wpit->second);
return CGAL::make_triple(out, res.second, res.third);
}
// Without Delaunay filtering but with certification:
// a boolean is returned that indicates if a sufficiently large
// neighborhood has been considered so that the
// Voronoi cell of p is not affected by any point outside the smallest
// ball centered on p containing all points in [first,beyond)
template <class OutputIterator, class InputIterator, class Kernel>
Quadruple< OutputIterator, typename Kernel::FT, bool, bool >
surface_neighbor_coordinates_certified_3(InputIterator
first, InputIterator beyond,
const typename Kernel::Point_3& p,
const typename Kernel::Vector_3& normal,
OutputIterator out,
const Kernel& )
{
typedef Voronoi_intersection_2_traits_3<Kernel> I_gt;
return surface_neighbor_coordinates_certified_3(first, beyond, p, out,
I_gt(p,normal));
}
//this function takes the radius of the sphere centered on p
// containing the points in [first, beyond] (i.e. the maximal
// distance from p to [first,beyond) as add. parameter:
template <class OutputIterator, class InputIterator, class Kernel>
inline
Quadruple< OutputIterator, typename Kernel::FT, bool, bool >
surface_neighbor_coordinates_certified_3(InputIterator first, InputIterator beyond,
const typename Kernel::Point_3& p,
const typename Kernel::Vector_3& normal,
const typename Kernel::FT& radius,
OutputIterator out, const Kernel& )
{
typedef Voronoi_intersection_2_traits_3<Kernel> I_gt;
return surface_neighbor_coordinates_certified_3(first, beyond, p, radius, out,
I_gt(p,normal));
}
// FIXME : this should probably be replaced by some kernel functor.
//struct necessary to sort the points by distance to p:
//also used in surface_neighbors_3.h
template <class Traits>
struct closer_to_point
: public std::less<typename Traits::Point_2>
{
typedef typename Traits::Point_2 Point_2;
closer_to_point(const Point_2& _p, const Traits& t)
: p(_p), traits(t) { }
bool operator()(const Point_2& q, const Point_2& r) const
{
return traits.less_distance_to_point_2_object()(p,q,r);
}
private:
Point_2 p;
Traits traits;
};
// Versions with instantiated traits class:
template <class OutputIterator, class InputIterator, class ITraits>
Quadruple< OutputIterator, typename ITraits::FT, bool, bool >
surface_neighbor_coordinates_certified_3(InputIterator first,
InputIterator beyond,
const typename ITraits::Point_2& p,
OutputIterator out,
const ITraits& traits)
{
//find the point in [first,beyond) furthest from p:
InputIterator furthest = std::max_element(first, beyond,
closer_to_point<ITraits>(p, traits));
return surface_neighbor_coordinates_certified_3(first, beyond, p,
traits.compute_squared_distance_2_object()(p,*furthest),
out, traits);
}
//with radius(maximal distance from p to [first,beyond)) as
// add. parameter:
template <class OutputIterator, class InputIterator, class ITraits>
Quadruple< OutputIterator, typename ITraits::FT, bool, bool >
surface_neighbor_coordinates_certified_3(InputIterator first,
InputIterator beyond,
const typename ITraits::Point_2& p,
const typename ITraits::FT& radius,
OutputIterator out,
const ITraits& traits)
{
//definition of the Voronoi intersection triangulation:
typedef Regular_triangulation_2< ITraits> I_triangulation;
//build Voronoi intersection triangulation:
I_triangulation it(traits);
typename ITraits::Construct_weighted_point_2 p2wp =
it.geom_traits().construct_weighted_point_2_object();
typename ITraits::Construct_point_2 wp2p =
it.geom_traits().construct_point_2_object();
while(first != beyond){
it.insert(p2wp(*first++));
}
//collect the Voronoi vertices of the cell of p in order to
//determine the furthest distance from p to the boundary of its cell
std::vector< typename ITraits::Point_2 > vor_vertices;
//unfortunately, there is no function call without Face_handle
// "start" because this would cause type conflicts because
// of resembling function signatures (-> default constructor)
typename ITraits::Weighted_point_2 wp =
traits.construct_weighted_point_2_object()(p);
typedef std::vector<std::pair<typename ITraits::Weighted_point_2,
typename ITraits::FT> > WPoint_coordinate_vector;
WPoint_coordinate_vector wpoint_coords;
Triple< std::back_insert_iterator<WPoint_coordinate_vector>,
typename ITraits::FT, bool > res =
regular_neighbor_coordinates_2(it, wp, std::back_inserter(wpoint_coords),
std::back_inserter(vor_vertices),
typename I_triangulation::Face_handle());
// regular_neighbor_coordinates_2 returns weighted_point_2 (in fact, _3)
// but surface_neighbor_coordinates_3 returns point_3 so the weight must be
// dropped
typename WPoint_coordinate_vector::const_iterator wpit = wpoint_coords.begin(),
wpend = wpoint_coords.end();
for(; wpit!=wpend; ++wpit)
*out++ = std::make_pair(wp2p(wpit->first), wpit->second);
// if the distance to the furthest sample point is smaller
// than twice the distance to the furthest vertex, not all neighbors
// might be found: return false
typename ITraits::Point_2 furthest =
*std::max_element(vor_vertices.begin(), vor_vertices.end(),
closer_to_point<ITraits>(p,traits));
if(radius < 4* traits.compute_squared_distance_2_object()(p, furthest))
return make_quadruple(out, res.second, res.third, false);
return make_quadruple(out, res.second,res.third, true);
}
// FIXME :
//Sylvain:
//this class should probably be moved to CGAL/function_objects.h
// it is used in the (next two) functions
// it is also used in surface_neighbors_3.h
//
//projection of Vertex_handle (or equiv. Vertices_iterator) to Point
template < class NodeIterator>
struct Project_vertex_iterator_to_point
{
typedef NodeIterator argument_type;
typedef typename std::iterator_traits<NodeIterator>::value_type Node;
typedef typename Node::Point Point;
typedef Point result_type;
Point& operator()( NodeIterator& x) const { return x->point(); }
const Point& operator()( const NodeIterator& x) const { return x->point(); }
};
//using Delaunay triangulation for candidate point filtering:
// => no certification is necessary
template <class Dt, class OutputIterator>
inline
Triple< OutputIterator, typename Dt::Geom_traits::FT, bool >
surface_neighbor_coordinates_3(const Dt& dt,
const typename Dt::Geom_traits::Point_3& p,
const typename Dt::Geom_traits::Vector_3& normal,
OutputIterator out,
typename Dt::Cell_handle start = typename Dt::Cell_handle())
{
typedef Voronoi_intersection_2_traits_3<typename Dt::Geom_traits> I_gt;
return surface_neighbor_coordinates_3(dt, p, out, I_gt(p,normal), start);
}
template <class Dt, class OutputIterator, class ITraits>
Triple< OutputIterator, typename ITraits::FT, bool >
surface_neighbor_coordinates_3(const Dt& dt,
const typename ITraits::Point_2& p,
OutputIterator out, const ITraits& traits,
typename Dt::Cell_handle start = typename Dt::Cell_handle())
{
typedef typename ITraits::FT Coord_type;
typedef typename ITraits::Point_2 Point_3;
typedef typename Dt::Cell_handle Cell_handle;
typedef typename Dt::Vertex_handle Vertex_handle;
typedef typename Dt::Locate_type Locate_type;
//the Vertex_handle is, in fact, an iterator over vertex:
typedef Project_vertex_iterator_to_point< Vertex_handle> Proj_point;
typedef Iterator_project<typename std::list< Vertex_handle >::iterator,
Proj_point,
const Point_3&,
const Point_3*,
std::ptrdiff_t,
std::forward_iterator_tag> Point_iterator;
Locate_type lt;
int li, lj ;
Cell_handle c = dt.locate(p, lt, li,lj,start);
//if p is located on a vertex: the only neighbor is found
if(lt == Dt::VERTEX){
*out++= std::make_pair(c->vertex(li)->point(), Coord_type(1));
return make_triple(out, Coord_type(1), true);
}
//the candidate points are the points of dt in conflict with p:
typename std::list< Vertex_handle > conflict_vertices;
dt.vertices_on_conflict_zone_boundary(p, c, std::back_inserter(conflict_vertices));
for (typename std::list< Vertex_handle >::iterator it = conflict_vertices.begin();
it != conflict_vertices.end();)
{
if(dt.is_infinite(*it)){
typename std::list< Vertex_handle >::iterator itp = it;
it++;
conflict_vertices.erase(itp);
} else {
it++;
}
}
return surface_neighbor_coordinates_3(Point_iterator(conflict_vertices.begin()),
Point_iterator(conflict_vertices.end()),
p, out, traits);
}
} //namespace CGAL
#endif // CGAL_SURFACE_NEIGHBOR_COORDINATES_3_H