cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate...

46 lines
1.6 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous}
\ccDefinition
This \ccc{AdaptableFunctor} provides evaluation of a
\ccc{PolynomialTraits_d::Polynomial_d} interpreted as a homogeneous polynomial
{\bf in one variable}. \\
For instance the polynomial $p = 5x^2y^3 + y$ is interpreted as the homogeneous polynomial
$p[x](u,v) = 5x^2u^3 + uv^2$ and evaluated as such.
\ccRefines
\ccc{AdaptableFunctor}\\
\ccc{CopyConstructible}\\
\ccc{DefaultConstructible}\\
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{fo}
\ccTypedef{typedef PolynomialTraits_d::Coefficient_type result_type;}{}
\ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Coefficient_type u,
PolynomialTraits_d::Coefficient_type v);}{
Returns $p(u,v)$, with respect to the outermost variable.
% \\ The homogeneous degree is considered as equal to the degree of $p$.
}
%\ccMethod{result_type operator()( PolynomialTraits_d::Polynomial_d p,
% PolynomialTraits_d::Coefficient_type u,
% PolynomialTraits_d::Coefficient_type v,
% int i);}{
% Returns $p(u,v)$, with respect to the variable $x_i$.
% \\ The homogeneous degree is considered as equal to the $degree(p,i)$.
% \ccPrecond $0 \leq i < d$
% }
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}