mirror of https://github.com/CGAL/cgal
44 lines
1.4 KiB
TeX
44 lines
1.4 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::MakeSquareFree}
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableBinaryFunction} computes the square-free part of
|
|
a polynomial of type \ccc{PolynomialTraits_d::Polynomial_d}
|
|
{\em up to a constant factor}.
|
|
|
|
A polynomial $p$ can be factored into square-free and pairwise coprime
|
|
non-constant factors $g_i$ with multiplicities $m_i$ and a constant factor $a$,
|
|
such that $p = a \cdot g_1^{m_1} \cdot ... \cdot g_n^{m_n}$, where all $g_i$ are canonicalized.
|
|
|
|
Given this decomposition, the square free part is defined as the product $g_1 \cdot ... \cdot g_n$,
|
|
which is computed by this functor.
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableUnaryFunction}\\
|
|
\ccc{CopyConstructible}\\
|
|
\ccc{DefaultConstructible}\\
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccCreationVariable{fo}
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}
|
|
\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d argument_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(argument_type p);}
|
|
{ Returns the square-free part of $p$.}
|
|
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::Canonicalize}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorize}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d::IsSquareFree}\\
|
|
|
|
\end{ccRefConcept}
|