cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principa...

57 lines
2.0 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::PrincipalSturmHabichtSequence}
\textbf{Note:} This functor is optional!
\ccDefinition
Computes the principal leading coefficients of the Sturm-Habicht sequence
of a polynomials $f$ of type \ccc{PolynomialTraits_d::Polynomial_d}
with respect a certain variable $x_i$.
This means that for the $j$-th Sturm-Habicht polynomial, this methods returns
the coefficient of $x_i^j$.
Note that the degree of the $j$-th Sturm-Habicht polynomial is at most $j$,
but the principal coefficient might be zero, thus, this functor does not
necessarily give the leading coefficient of the Sturm-Habicht polynomials.
In case that \ccc{PolynomialTraits_d::Coefficient_type} is \ccc{RealEmbeddable}, the function \ccc{CGAL::number_of_real_roots} can be used
on the resulting sequence to count the number of distinct real roots of
the polynomial~$f$.
\ccRefines
\ccc{AdaptableBinaryFunction}\\
\ccc{CopyConstructible}\\
\ccc{DefaultConstructible}\\
\ccCreationVariable{fo}
\ccOperations
\ccMethod{template<typename OutputIterator>
OutputIterator operator()(Polynomial_d f,
OutputIterator out);}
{ computes the principal coefficients of the
Sturm-Habicht sequence of $f$,
with respect to the outermost variable. Each element is of type
\ccc{PolynomialTraits_d::Coefficient_type}.}
\ccMethod{template<typename OutputIterator>
OutputIterator operator()(Polynomial_d f,
OutputIterator out,
int i);}
{ computes the principal coefficients
of the Sturm-Habicht sequence of $f$
with respect to the variable $x_i$.}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{CGAL::number_of_real_roots}\\
\ccRefIdfierPage{PolynomialTraits_d::Resultant}\\
\ccRefIdfierPage{PolynomialTraits_d::SturmHabichtSequence}\\
\ccRefIdfierPage{PolynomialTraits_d::PrincipalSubresultants}\\
\end{ccRefConcept}