cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Principa...

56 lines
1.9 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::PrincipalSubresultants}
\textbf{Note:} This functor is optional!
\ccDefinition
Computes the principal subresultant of two polynomials $p$ and $q$ of
type \ccc{PolynomialTraits_d::Coefficient_type}
with respect to the outermost variable.
The $i$-th principal subresultant, $\mathrm{sres}_i(p,q)$,
is defined as the coefficient at $t^i$ of the $i$-th polynomial
subresultant $\mathrm{Sres}_i(p,q)$. Thus, it is either the leading
coefficient of $\mathrm{Sres}_i$, or zero in the case where its degree is
below $i$.
The result is written in an output range, starting with the $0$-th
principal subresultant $\mathrm{sres}_0(p,q)$
,aka as the resultant of $p$ and $q$.
(Note that $\mathrm{sres}_0(p,q)=\mathrm{Sres}_0(p,q)$ by definition)
\ccRefines
\ccc{AdaptableBinaryFunction}\\
\ccc{CopyConstructible}\\
\ccc{DefaultConstructible}\\
\ccCreationVariable{fo}
\ccOperations
\ccMethod{template<typename OutputIterator>
OutputIterator operator()(Polynomial_d p,
Polynomial_d q,
OutputIterator out);}
{ computes the principal subresultants of $p$ and $q$,
with respect to the outermost variable. Each element is of type
\ccc{PolynomialTraits_d::Coefficient_type}.}
\ccMethod{template<typename OutputIterator>
OutputIterator operator()(Polynomial_d p,
Polynomial_d q,
OutputIterator out,
int i);}
{ computes the principal subresultants of $p$ and $q$,
with respect to the variable $x_i$.}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::Resultant}\\
\ccRefIdfierPage{PolynomialTraits_d::PolynomialSubresultants}\\
\ccRefIdfierPage{PolynomialTraits_d::PrincipalSturmHabichtSequence}\\
\end{ccRefConcept}